| Step |
Hyp |
Ref |
Expression |
| 1 |
|
releq |
|- ( R = S -> ( Rel R <-> Rel S ) ) |
| 2 |
|
dmeq |
|- ( R = S -> dom R = dom S ) |
| 3 |
2
|
eqeq1d |
|- ( R = S -> ( dom R = A <-> dom S = A ) ) |
| 4 |
|
cnveq |
|- ( R = S -> `' R = `' S ) |
| 5 |
|
coeq1 |
|- ( R = S -> ( R o. R ) = ( S o. R ) ) |
| 6 |
|
coeq2 |
|- ( R = S -> ( S o. R ) = ( S o. S ) ) |
| 7 |
5 6
|
eqtrd |
|- ( R = S -> ( R o. R ) = ( S o. S ) ) |
| 8 |
4 7
|
uneq12d |
|- ( R = S -> ( `' R u. ( R o. R ) ) = ( `' S u. ( S o. S ) ) ) |
| 9 |
8
|
sseq1d |
|- ( R = S -> ( ( `' R u. ( R o. R ) ) C_ R <-> ( `' S u. ( S o. S ) ) C_ R ) ) |
| 10 |
|
sseq2 |
|- ( R = S -> ( ( `' S u. ( S o. S ) ) C_ R <-> ( `' S u. ( S o. S ) ) C_ S ) ) |
| 11 |
9 10
|
bitrd |
|- ( R = S -> ( ( `' R u. ( R o. R ) ) C_ R <-> ( `' S u. ( S o. S ) ) C_ S ) ) |
| 12 |
1 3 11
|
3anbi123d |
|- ( R = S -> ( ( Rel R /\ dom R = A /\ ( `' R u. ( R o. R ) ) C_ R ) <-> ( Rel S /\ dom S = A /\ ( `' S u. ( S o. S ) ) C_ S ) ) ) |
| 13 |
|
df-er |
|- ( R Er A <-> ( Rel R /\ dom R = A /\ ( `' R u. ( R o. R ) ) C_ R ) ) |
| 14 |
|
df-er |
|- ( S Er A <-> ( Rel S /\ dom S = A /\ ( `' S u. ( S o. S ) ) C_ S ) ) |
| 15 |
12 13 14
|
3bitr4g |
|- ( R = S -> ( R Er A <-> S Er A ) ) |