Metamath Proof Explorer


Theorem ereq2

Description: Equality theorem for equivalence predicate. (Contributed by Mario Carneiro, 12-Aug-2015)

Ref Expression
Assertion ereq2
|- ( A = B -> ( R Er A <-> R Er B ) )

Proof

Step Hyp Ref Expression
1 eqeq2
 |-  ( A = B -> ( dom R = A <-> dom R = B ) )
2 1 3anbi2d
 |-  ( A = B -> ( ( Rel R /\ dom R = A /\ ( `' R u. ( R o. R ) ) C_ R ) <-> ( Rel R /\ dom R = B /\ ( `' R u. ( R o. R ) ) C_ R ) ) )
3 df-er
 |-  ( R Er A <-> ( Rel R /\ dom R = A /\ ( `' R u. ( R o. R ) ) C_ R ) )
4 df-er
 |-  ( R Er B <-> ( Rel R /\ dom R = B /\ ( `' R u. ( R o. R ) ) C_ R ) )
5 2 3 4 3bitr4g
 |-  ( A = B -> ( R Er A <-> R Er B ) )