Description: Equality theorem for equivalence predicate. (Contributed by Mario Carneiro, 12-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | ereq2 | |- ( A = B -> ( R Er A <-> R Er B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 | |- ( A = B -> ( dom R = A <-> dom R = B ) ) |
|
2 | 1 | 3anbi2d | |- ( A = B -> ( ( Rel R /\ dom R = A /\ ( `' R u. ( R o. R ) ) C_ R ) <-> ( Rel R /\ dom R = B /\ ( `' R u. ( R o. R ) ) C_ R ) ) ) |
3 | df-er | |- ( R Er A <-> ( Rel R /\ dom R = A /\ ( `' R u. ( R o. R ) ) C_ R ) ) |
|
4 | df-er | |- ( R Er B <-> ( Rel R /\ dom R = B /\ ( `' R u. ( R o. R ) ) C_ R ) ) |
|
5 | 2 3 4 | 3bitr4g | |- ( A = B -> ( R Er A <-> R Er B ) ) |