Metamath Proof Explorer


Theorem erex

Description: An equivalence relation is a set if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010) (Proof shortened by Mario Carneiro, 12-Aug-2015)

Ref Expression
Assertion erex
|- ( R Er A -> ( A e. V -> R e. _V ) )

Proof

Step Hyp Ref Expression
1 erssxp
 |-  ( R Er A -> R C_ ( A X. A ) )
2 sqxpexg
 |-  ( A e. V -> ( A X. A ) e. _V )
3 ssexg
 |-  ( ( R C_ ( A X. A ) /\ ( A X. A ) e. _V ) -> R e. _V )
4 1 2 3 syl2an
 |-  ( ( R Er A /\ A e. V ) -> R e. _V )
5 4 ex
 |-  ( R Er A -> ( A e. V -> R e. _V ) )