Description: An equivalence relation is a set if and only if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | erexb | |- ( R Er A -> ( R e. _V <-> A e. _V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmexg | |- ( R e. _V -> dom R e. _V ) |
|
| 2 | erdm | |- ( R Er A -> dom R = A ) |
|
| 3 | 2 | eleq1d | |- ( R Er A -> ( dom R e. _V <-> A e. _V ) ) |
| 4 | 1 3 | imbitrid | |- ( R Er A -> ( R e. _V -> A e. _V ) ) |
| 5 | erex | |- ( R Er A -> ( A e. _V -> R e. _V ) ) |
|
| 6 | 4 5 | impbid | |- ( R Er A -> ( R e. _V <-> A e. _V ) ) |