Metamath Proof Explorer


Theorem erexb

Description: An equivalence relation is a set if and only if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Assertion erexb
|- ( R Er A -> ( R e. _V <-> A e. _V ) )

Proof

Step Hyp Ref Expression
1 dmexg
 |-  ( R e. _V -> dom R e. _V )
2 erdm
 |-  ( R Er A -> dom R = A )
3 2 eleq1d
 |-  ( R Er A -> ( dom R e. _V <-> A e. _V ) )
4 1 3 syl5ib
 |-  ( R Er A -> ( R e. _V -> A e. _V ) )
5 erex
 |-  ( R Er A -> ( A e. _V -> R e. _V ) )
6 4 5 impbid
 |-  ( R Er A -> ( R e. _V <-> A e. _V ) )