Metamath Proof Explorer


Theorem erlbrd

Description: Deduce the ring localization equivalence relation. If for some T e. S we have T x. ( E x. H - F x. G ) = 0 , then pairs <. E , G >. and <. F , H >. are equivalent under the localization relation. (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypotheses erlcl1.b
|- B = ( Base ` R )
erlcl1.e
|- .~ = ( R ~RL S )
erlcl1.s
|- ( ph -> S C_ B )
erldi.1
|- .0. = ( 0g ` R )
erldi.2
|- .x. = ( .r ` R )
erldi.3
|- .- = ( -g ` R )
erlbrd.u
|- ( ph -> U = <. E , G >. )
erlbrd.v
|- ( ph -> V = <. F , H >. )
erlbrd.e
|- ( ph -> E e. B )
erlbrd.f
|- ( ph -> F e. B )
erlbrd.g
|- ( ph -> G e. S )
erlbrd.h
|- ( ph -> H e. S )
erlbrd.1
|- ( ph -> T e. S )
erlbrd.2
|- ( ph -> ( T .x. ( ( E .x. H ) .- ( F .x. G ) ) ) = .0. )
Assertion erlbrd
|- ( ph -> U .~ V )

Proof

Step Hyp Ref Expression
1 erlcl1.b
 |-  B = ( Base ` R )
2 erlcl1.e
 |-  .~ = ( R ~RL S )
3 erlcl1.s
 |-  ( ph -> S C_ B )
4 erldi.1
 |-  .0. = ( 0g ` R )
5 erldi.2
 |-  .x. = ( .r ` R )
6 erldi.3
 |-  .- = ( -g ` R )
7 erlbrd.u
 |-  ( ph -> U = <. E , G >. )
8 erlbrd.v
 |-  ( ph -> V = <. F , H >. )
9 erlbrd.e
 |-  ( ph -> E e. B )
10 erlbrd.f
 |-  ( ph -> F e. B )
11 erlbrd.g
 |-  ( ph -> G e. S )
12 erlbrd.h
 |-  ( ph -> H e. S )
13 erlbrd.1
 |-  ( ph -> T e. S )
14 erlbrd.2
 |-  ( ph -> ( T .x. ( ( E .x. H ) .- ( F .x. G ) ) ) = .0. )
15 9 11 opelxpd
 |-  ( ph -> <. E , G >. e. ( B X. S ) )
16 7 15 eqeltrd
 |-  ( ph -> U e. ( B X. S ) )
17 10 12 opelxpd
 |-  ( ph -> <. F , H >. e. ( B X. S ) )
18 8 17 eqeltrd
 |-  ( ph -> V e. ( B X. S ) )
19 16 18 jca
 |-  ( ph -> ( U e. ( B X. S ) /\ V e. ( B X. S ) ) )
20 simpr
 |-  ( ( ph /\ t = T ) -> t = T )
21 20 oveq1d
 |-  ( ( ph /\ t = T ) -> ( t .x. ( ( E .x. H ) .- ( F .x. G ) ) ) = ( T .x. ( ( E .x. H ) .- ( F .x. G ) ) ) )
22 21 eqeq1d
 |-  ( ( ph /\ t = T ) -> ( ( t .x. ( ( E .x. H ) .- ( F .x. G ) ) ) = .0. <-> ( T .x. ( ( E .x. H ) .- ( F .x. G ) ) ) = .0. ) )
23 13 22 14 rspcedvd
 |-  ( ph -> E. t e. S ( t .x. ( ( E .x. H ) .- ( F .x. G ) ) ) = .0. )
24 19 23 jca
 |-  ( ph -> ( ( U e. ( B X. S ) /\ V e. ( B X. S ) ) /\ E. t e. S ( t .x. ( ( E .x. H ) .- ( F .x. G ) ) ) = .0. ) )
25 eqid
 |-  ( B X. S ) = ( B X. S )
26 eqid
 |-  { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ E. t e. S ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. ) } = { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ E. t e. S ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. ) }
27 1 4 5 6 25 26 3 erlval
 |-  ( ph -> ( R ~RL S ) = { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ E. t e. S ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. ) } )
28 2 27 eqtrid
 |-  ( ph -> .~ = { <. a , b >. | ( ( a e. ( B X. S ) /\ b e. ( B X. S ) ) /\ E. t e. S ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. ) } )
29 simprl
 |-  ( ( ph /\ ( a = U /\ b = V ) ) -> a = U )
30 29 fveq2d
 |-  ( ( ph /\ ( a = U /\ b = V ) ) -> ( 1st ` a ) = ( 1st ` U ) )
31 7 fveq2d
 |-  ( ph -> ( 1st ` U ) = ( 1st ` <. E , G >. ) )
32 op1stg
 |-  ( ( E e. B /\ G e. S ) -> ( 1st ` <. E , G >. ) = E )
33 9 11 32 syl2anc
 |-  ( ph -> ( 1st ` <. E , G >. ) = E )
34 31 33 eqtrd
 |-  ( ph -> ( 1st ` U ) = E )
35 34 adantr
 |-  ( ( ph /\ ( a = U /\ b = V ) ) -> ( 1st ` U ) = E )
36 30 35 eqtrd
 |-  ( ( ph /\ ( a = U /\ b = V ) ) -> ( 1st ` a ) = E )
37 simprr
 |-  ( ( ph /\ ( a = U /\ b = V ) ) -> b = V )
38 37 fveq2d
 |-  ( ( ph /\ ( a = U /\ b = V ) ) -> ( 2nd ` b ) = ( 2nd ` V ) )
39 8 fveq2d
 |-  ( ph -> ( 2nd ` V ) = ( 2nd ` <. F , H >. ) )
40 op2ndg
 |-  ( ( F e. B /\ H e. S ) -> ( 2nd ` <. F , H >. ) = H )
41 10 12 40 syl2anc
 |-  ( ph -> ( 2nd ` <. F , H >. ) = H )
42 39 41 eqtrd
 |-  ( ph -> ( 2nd ` V ) = H )
43 42 adantr
 |-  ( ( ph /\ ( a = U /\ b = V ) ) -> ( 2nd ` V ) = H )
44 38 43 eqtrd
 |-  ( ( ph /\ ( a = U /\ b = V ) ) -> ( 2nd ` b ) = H )
45 36 44 oveq12d
 |-  ( ( ph /\ ( a = U /\ b = V ) ) -> ( ( 1st ` a ) .x. ( 2nd ` b ) ) = ( E .x. H ) )
46 37 fveq2d
 |-  ( ( ph /\ ( a = U /\ b = V ) ) -> ( 1st ` b ) = ( 1st ` V ) )
47 8 fveq2d
 |-  ( ph -> ( 1st ` V ) = ( 1st ` <. F , H >. ) )
48 op1stg
 |-  ( ( F e. B /\ H e. S ) -> ( 1st ` <. F , H >. ) = F )
49 10 12 48 syl2anc
 |-  ( ph -> ( 1st ` <. F , H >. ) = F )
50 47 49 eqtrd
 |-  ( ph -> ( 1st ` V ) = F )
51 50 adantr
 |-  ( ( ph /\ ( a = U /\ b = V ) ) -> ( 1st ` V ) = F )
52 46 51 eqtrd
 |-  ( ( ph /\ ( a = U /\ b = V ) ) -> ( 1st ` b ) = F )
53 29 fveq2d
 |-  ( ( ph /\ ( a = U /\ b = V ) ) -> ( 2nd ` a ) = ( 2nd ` U ) )
54 7 fveq2d
 |-  ( ph -> ( 2nd ` U ) = ( 2nd ` <. E , G >. ) )
55 op2ndg
 |-  ( ( E e. B /\ G e. S ) -> ( 2nd ` <. E , G >. ) = G )
56 9 11 55 syl2anc
 |-  ( ph -> ( 2nd ` <. E , G >. ) = G )
57 54 56 eqtrd
 |-  ( ph -> ( 2nd ` U ) = G )
58 57 adantr
 |-  ( ( ph /\ ( a = U /\ b = V ) ) -> ( 2nd ` U ) = G )
59 53 58 eqtrd
 |-  ( ( ph /\ ( a = U /\ b = V ) ) -> ( 2nd ` a ) = G )
60 52 59 oveq12d
 |-  ( ( ph /\ ( a = U /\ b = V ) ) -> ( ( 1st ` b ) .x. ( 2nd ` a ) ) = ( F .x. G ) )
61 45 60 oveq12d
 |-  ( ( ph /\ ( a = U /\ b = V ) ) -> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) = ( ( E .x. H ) .- ( F .x. G ) ) )
62 61 oveq2d
 |-  ( ( ph /\ ( a = U /\ b = V ) ) -> ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = ( t .x. ( ( E .x. H ) .- ( F .x. G ) ) ) )
63 62 eqeq1d
 |-  ( ( ph /\ ( a = U /\ b = V ) ) -> ( ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. <-> ( t .x. ( ( E .x. H ) .- ( F .x. G ) ) ) = .0. ) )
64 63 rexbidv
 |-  ( ( ph /\ ( a = U /\ b = V ) ) -> ( E. t e. S ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. <-> E. t e. S ( t .x. ( ( E .x. H ) .- ( F .x. G ) ) ) = .0. ) )
65 28 64 brab2d
 |-  ( ph -> ( U .~ V <-> ( ( U e. ( B X. S ) /\ V e. ( B X. S ) ) /\ E. t e. S ( t .x. ( ( E .x. H ) .- ( F .x. G ) ) ) = .0. ) ) )
66 24 65 mpbird
 |-  ( ph -> U .~ V )