Step |
Hyp |
Ref |
Expression |
1 |
|
ercpbl.r |
|- ( ph -> .~ Er V ) |
2 |
|
ercpbl.v |
|- ( ph -> V e. W ) |
3 |
|
ercpbl.f |
|- F = ( x e. V |-> [ x ] .~ ) |
4 |
|
erlecpbl.e |
|- ( ph -> ( ( A .~ C /\ B .~ D ) -> ( A N B <-> C N D ) ) ) |
5 |
1
|
3ad2ant1 |
|- ( ( ph /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> .~ Er V ) |
6 |
2
|
3ad2ant1 |
|- ( ( ph /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> V e. W ) |
7 |
|
simp2l |
|- ( ( ph /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> A e. V ) |
8 |
5 6 3 7
|
ercpbllem |
|- ( ( ph /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( ( F ` A ) = ( F ` C ) <-> A .~ C ) ) |
9 |
|
simp2r |
|- ( ( ph /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> B e. V ) |
10 |
5 6 3 9
|
ercpbllem |
|- ( ( ph /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( ( F ` B ) = ( F ` D ) <-> B .~ D ) ) |
11 |
8 10
|
anbi12d |
|- ( ( ph /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( ( ( F ` A ) = ( F ` C ) /\ ( F ` B ) = ( F ` D ) ) <-> ( A .~ C /\ B .~ D ) ) ) |
12 |
4
|
3ad2ant1 |
|- ( ( ph /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( ( A .~ C /\ B .~ D ) -> ( A N B <-> C N D ) ) ) |
13 |
11 12
|
sylbid |
|- ( ( ph /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( ( ( F ` A ) = ( F ` C ) /\ ( F ` B ) = ( F ` D ) ) -> ( A N B <-> C N D ) ) ) |