Step |
Hyp |
Ref |
Expression |
1 |
|
erler.1 |
|- B = ( Base ` R ) |
2 |
|
erler.2 |
|- .0. = ( 0g ` R ) |
3 |
|
erler.3 |
|- .1. = ( 1r ` R ) |
4 |
|
erler.4 |
|- .x. = ( .r ` R ) |
5 |
|
erler.5 |
|- .- = ( -g ` R ) |
6 |
|
erler.w |
|- W = ( B X. S ) |
7 |
|
erler.q |
|- .~ = ( R ~RL S ) |
8 |
|
erler.r |
|- ( ph -> R e. CRing ) |
9 |
|
erler.s |
|- ( ph -> S e. ( SubMnd ` ( mulGrp ` R ) ) ) |
10 |
|
eqid |
|- { <. a , b >. | ( ( a e. W /\ b e. W ) /\ E. t e. S ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. ) } = { <. a , b >. | ( ( a e. W /\ b e. W ) /\ E. t e. S ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. ) } |
11 |
10
|
relopabiv |
|- Rel { <. a , b >. | ( ( a e. W /\ b e. W ) /\ E. t e. S ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. ) } |
12 |
11
|
a1i |
|- ( ph -> Rel { <. a , b >. | ( ( a e. W /\ b e. W ) /\ E. t e. S ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. ) } ) |
13 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
14 |
13 1
|
mgpbas |
|- B = ( Base ` ( mulGrp ` R ) ) |
15 |
14
|
submss |
|- ( S e. ( SubMnd ` ( mulGrp ` R ) ) -> S C_ B ) |
16 |
9 15
|
syl |
|- ( ph -> S C_ B ) |
17 |
1 2 4 5 6 10 16
|
erlval |
|- ( ph -> ( R ~RL S ) = { <. a , b >. | ( ( a e. W /\ b e. W ) /\ E. t e. S ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. ) } ) |
18 |
7 17
|
eqtrid |
|- ( ph -> .~ = { <. a , b >. | ( ( a e. W /\ b e. W ) /\ E. t e. S ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. ) } ) |
19 |
18
|
releqd |
|- ( ph -> ( Rel .~ <-> Rel { <. a , b >. | ( ( a e. W /\ b e. W ) /\ E. t e. S ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. ) } ) ) |
20 |
12 19
|
mpbird |
|- ( ph -> Rel .~ ) |
21 |
|
simpl |
|- ( ( a = x /\ b = y ) -> a = x ) |
22 |
21
|
fveq2d |
|- ( ( a = x /\ b = y ) -> ( 1st ` a ) = ( 1st ` x ) ) |
23 |
|
simpr |
|- ( ( a = x /\ b = y ) -> b = y ) |
24 |
23
|
fveq2d |
|- ( ( a = x /\ b = y ) -> ( 2nd ` b ) = ( 2nd ` y ) ) |
25 |
22 24
|
oveq12d |
|- ( ( a = x /\ b = y ) -> ( ( 1st ` a ) .x. ( 2nd ` b ) ) = ( ( 1st ` x ) .x. ( 2nd ` y ) ) ) |
26 |
23
|
fveq2d |
|- ( ( a = x /\ b = y ) -> ( 1st ` b ) = ( 1st ` y ) ) |
27 |
21
|
fveq2d |
|- ( ( a = x /\ b = y ) -> ( 2nd ` a ) = ( 2nd ` x ) ) |
28 |
26 27
|
oveq12d |
|- ( ( a = x /\ b = y ) -> ( ( 1st ` b ) .x. ( 2nd ` a ) ) = ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) |
29 |
25 28
|
oveq12d |
|- ( ( a = x /\ b = y ) -> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) = ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) |
30 |
29
|
oveq2d |
|- ( ( a = x /\ b = y ) -> ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) ) |
31 |
30
|
eqeq1d |
|- ( ( a = x /\ b = y ) -> ( ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. <-> ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) ) |
32 |
31
|
rexbidv |
|- ( ( a = x /\ b = y ) -> ( E. t e. S ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. <-> E. t e. S ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) ) |
33 |
32
|
adantl |
|- ( ( ph /\ ( a = x /\ b = y ) ) -> ( E. t e. S ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. <-> E. t e. S ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) ) |
34 |
18 33
|
brab2d |
|- ( ph -> ( x .~ y <-> ( ( x e. W /\ y e. W ) /\ E. t e. S ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) ) ) |
35 |
34
|
biimpa |
|- ( ( ph /\ x .~ y ) -> ( ( x e. W /\ y e. W ) /\ E. t e. S ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) ) |
36 |
35
|
simplrd |
|- ( ( ph /\ x .~ y ) -> y e. W ) |
37 |
35
|
simplld |
|- ( ( ph /\ x .~ y ) -> x e. W ) |
38 |
36 37
|
jca |
|- ( ( ph /\ x .~ y ) -> ( y e. W /\ x e. W ) ) |
39 |
35
|
simprd |
|- ( ( ph /\ x .~ y ) -> E. t e. S ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) |
40 |
8
|
crngringd |
|- ( ph -> R e. Ring ) |
41 |
40
|
ringgrpd |
|- ( ph -> R e. Grp ) |
42 |
41
|
ad3antrrr |
|- ( ( ( ( ph /\ x .~ y ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) -> R e. Grp ) |
43 |
40
|
ad3antrrr |
|- ( ( ( ( ph /\ x .~ y ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) -> R e. Ring ) |
44 |
37
|
ad2antrr |
|- ( ( ( ( ph /\ x .~ y ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) -> x e. W ) |
45 |
|
xp1st |
|- ( x e. ( B X. S ) -> ( 1st ` x ) e. B ) |
46 |
45 6
|
eleq2s |
|- ( x e. W -> ( 1st ` x ) e. B ) |
47 |
44 46
|
syl |
|- ( ( ( ( ph /\ x .~ y ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) -> ( 1st ` x ) e. B ) |
48 |
16
|
ad3antrrr |
|- ( ( ( ( ph /\ x .~ y ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) -> S C_ B ) |
49 |
36
|
ad2antrr |
|- ( ( ( ( ph /\ x .~ y ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) -> y e. W ) |
50 |
|
xp2nd |
|- ( y e. ( B X. S ) -> ( 2nd ` y ) e. S ) |
51 |
50 6
|
eleq2s |
|- ( y e. W -> ( 2nd ` y ) e. S ) |
52 |
49 51
|
syl |
|- ( ( ( ( ph /\ x .~ y ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) -> ( 2nd ` y ) e. S ) |
53 |
48 52
|
sseldd |
|- ( ( ( ( ph /\ x .~ y ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) -> ( 2nd ` y ) e. B ) |
54 |
1 4 43 47 53
|
ringcld |
|- ( ( ( ( ph /\ x .~ y ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) -> ( ( 1st ` x ) .x. ( 2nd ` y ) ) e. B ) |
55 |
|
xp1st |
|- ( y e. ( B X. S ) -> ( 1st ` y ) e. B ) |
56 |
55 6
|
eleq2s |
|- ( y e. W -> ( 1st ` y ) e. B ) |
57 |
49 56
|
syl |
|- ( ( ( ( ph /\ x .~ y ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) -> ( 1st ` y ) e. B ) |
58 |
|
xp2nd |
|- ( x e. ( B X. S ) -> ( 2nd ` x ) e. S ) |
59 |
58 6
|
eleq2s |
|- ( x e. W -> ( 2nd ` x ) e. S ) |
60 |
44 59
|
syl |
|- ( ( ( ( ph /\ x .~ y ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) -> ( 2nd ` x ) e. S ) |
61 |
48 60
|
sseldd |
|- ( ( ( ( ph /\ x .~ y ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) -> ( 2nd ` x ) e. B ) |
62 |
1 4 43 57 61
|
ringcld |
|- ( ( ( ( ph /\ x .~ y ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) -> ( ( 1st ` y ) .x. ( 2nd ` x ) ) e. B ) |
63 |
|
eqid |
|- ( invg ` R ) = ( invg ` R ) |
64 |
1 5 63
|
grpinvsub |
|- ( ( R e. Grp /\ ( ( 1st ` x ) .x. ( 2nd ` y ) ) e. B /\ ( ( 1st ` y ) .x. ( 2nd ` x ) ) e. B ) -> ( ( invg ` R ) ` ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = ( ( ( 1st ` y ) .x. ( 2nd ` x ) ) .- ( ( 1st ` x ) .x. ( 2nd ` y ) ) ) ) |
65 |
42 54 62 64
|
syl3anc |
|- ( ( ( ( ph /\ x .~ y ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) -> ( ( invg ` R ) ` ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = ( ( ( 1st ` y ) .x. ( 2nd ` x ) ) .- ( ( 1st ` x ) .x. ( 2nd ` y ) ) ) ) |
66 |
65
|
oveq2d |
|- ( ( ( ( ph /\ x .~ y ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) -> ( t .x. ( ( invg ` R ) ` ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) ) = ( t .x. ( ( ( 1st ` y ) .x. ( 2nd ` x ) ) .- ( ( 1st ` x ) .x. ( 2nd ` y ) ) ) ) ) |
67 |
|
simplr |
|- ( ( ( ( ph /\ x .~ y ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) -> t e. S ) |
68 |
48 67
|
sseldd |
|- ( ( ( ( ph /\ x .~ y ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) -> t e. B ) |
69 |
1 5
|
grpsubcl |
|- ( ( R e. Grp /\ ( ( 1st ` x ) .x. ( 2nd ` y ) ) e. B /\ ( ( 1st ` y ) .x. ( 2nd ` x ) ) e. B ) -> ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) e. B ) |
70 |
42 54 62 69
|
syl3anc |
|- ( ( ( ( ph /\ x .~ y ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) -> ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) e. B ) |
71 |
1 4 63 43 68 70
|
ringmneg2 |
|- ( ( ( ( ph /\ x .~ y ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) -> ( t .x. ( ( invg ` R ) ` ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) ) = ( ( invg ` R ) ` ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) ) ) |
72 |
|
simpr |
|- ( ( ( ( ph /\ x .~ y ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) -> ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) |
73 |
72
|
fveq2d |
|- ( ( ( ( ph /\ x .~ y ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) -> ( ( invg ` R ) ` ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) ) = ( ( invg ` R ) ` .0. ) ) |
74 |
2 63
|
grpinvid |
|- ( R e. Grp -> ( ( invg ` R ) ` .0. ) = .0. ) |
75 |
42 74
|
syl |
|- ( ( ( ( ph /\ x .~ y ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) -> ( ( invg ` R ) ` .0. ) = .0. ) |
76 |
71 73 75
|
3eqtrd |
|- ( ( ( ( ph /\ x .~ y ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) -> ( t .x. ( ( invg ` R ) ` ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) ) = .0. ) |
77 |
66 76
|
eqtr3d |
|- ( ( ( ( ph /\ x .~ y ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) -> ( t .x. ( ( ( 1st ` y ) .x. ( 2nd ` x ) ) .- ( ( 1st ` x ) .x. ( 2nd ` y ) ) ) ) = .0. ) |
78 |
77
|
ex |
|- ( ( ( ph /\ x .~ y ) /\ t e. S ) -> ( ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. -> ( t .x. ( ( ( 1st ` y ) .x. ( 2nd ` x ) ) .- ( ( 1st ` x ) .x. ( 2nd ` y ) ) ) ) = .0. ) ) |
79 |
78
|
reximdva |
|- ( ( ph /\ x .~ y ) -> ( E. t e. S ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. -> E. t e. S ( t .x. ( ( ( 1st ` y ) .x. ( 2nd ` x ) ) .- ( ( 1st ` x ) .x. ( 2nd ` y ) ) ) ) = .0. ) ) |
80 |
39 79
|
mpd |
|- ( ( ph /\ x .~ y ) -> E. t e. S ( t .x. ( ( ( 1st ` y ) .x. ( 2nd ` x ) ) .- ( ( 1st ` x ) .x. ( 2nd ` y ) ) ) ) = .0. ) |
81 |
38 80
|
jca |
|- ( ( ph /\ x .~ y ) -> ( ( y e. W /\ x e. W ) /\ E. t e. S ( t .x. ( ( ( 1st ` y ) .x. ( 2nd ` x ) ) .- ( ( 1st ` x ) .x. ( 2nd ` y ) ) ) ) = .0. ) ) |
82 |
|
simpl |
|- ( ( a = y /\ b = x ) -> a = y ) |
83 |
82
|
fveq2d |
|- ( ( a = y /\ b = x ) -> ( 1st ` a ) = ( 1st ` y ) ) |
84 |
|
simpr |
|- ( ( a = y /\ b = x ) -> b = x ) |
85 |
84
|
fveq2d |
|- ( ( a = y /\ b = x ) -> ( 2nd ` b ) = ( 2nd ` x ) ) |
86 |
83 85
|
oveq12d |
|- ( ( a = y /\ b = x ) -> ( ( 1st ` a ) .x. ( 2nd ` b ) ) = ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) |
87 |
84
|
fveq2d |
|- ( ( a = y /\ b = x ) -> ( 1st ` b ) = ( 1st ` x ) ) |
88 |
82
|
fveq2d |
|- ( ( a = y /\ b = x ) -> ( 2nd ` a ) = ( 2nd ` y ) ) |
89 |
87 88
|
oveq12d |
|- ( ( a = y /\ b = x ) -> ( ( 1st ` b ) .x. ( 2nd ` a ) ) = ( ( 1st ` x ) .x. ( 2nd ` y ) ) ) |
90 |
86 89
|
oveq12d |
|- ( ( a = y /\ b = x ) -> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) = ( ( ( 1st ` y ) .x. ( 2nd ` x ) ) .- ( ( 1st ` x ) .x. ( 2nd ` y ) ) ) ) |
91 |
90
|
oveq2d |
|- ( ( a = y /\ b = x ) -> ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = ( t .x. ( ( ( 1st ` y ) .x. ( 2nd ` x ) ) .- ( ( 1st ` x ) .x. ( 2nd ` y ) ) ) ) ) |
92 |
91
|
eqeq1d |
|- ( ( a = y /\ b = x ) -> ( ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. <-> ( t .x. ( ( ( 1st ` y ) .x. ( 2nd ` x ) ) .- ( ( 1st ` x ) .x. ( 2nd ` y ) ) ) ) = .0. ) ) |
93 |
92
|
rexbidv |
|- ( ( a = y /\ b = x ) -> ( E. t e. S ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. <-> E. t e. S ( t .x. ( ( ( 1st ` y ) .x. ( 2nd ` x ) ) .- ( ( 1st ` x ) .x. ( 2nd ` y ) ) ) ) = .0. ) ) |
94 |
93
|
adantl |
|- ( ( ph /\ ( a = y /\ b = x ) ) -> ( E. t e. S ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. <-> E. t e. S ( t .x. ( ( ( 1st ` y ) .x. ( 2nd ` x ) ) .- ( ( 1st ` x ) .x. ( 2nd ` y ) ) ) ) = .0. ) ) |
95 |
18 94
|
brab2d |
|- ( ph -> ( y .~ x <-> ( ( y e. W /\ x e. W ) /\ E. t e. S ( t .x. ( ( ( 1st ` y ) .x. ( 2nd ` x ) ) .- ( ( 1st ` x ) .x. ( 2nd ` y ) ) ) ) = .0. ) ) ) |
96 |
95
|
adantr |
|- ( ( ph /\ x .~ y ) -> ( y .~ x <-> ( ( y e. W /\ x e. W ) /\ E. t e. S ( t .x. ( ( ( 1st ` y ) .x. ( 2nd ` x ) ) .- ( ( 1st ` x ) .x. ( 2nd ` y ) ) ) ) = .0. ) ) ) |
97 |
81 96
|
mpbird |
|- ( ( ph /\ x .~ y ) -> y .~ x ) |
98 |
9
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> S e. ( SubMnd ` ( mulGrp ` R ) ) ) |
99 |
98 15
|
syl |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> S C_ B ) |
100 |
37
|
adantr |
|- ( ( ( ph /\ x .~ y ) /\ y .~ z ) -> x e. W ) |
101 |
100
|
ad4antr |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> x e. W ) |
102 |
101 6
|
eleqtrdi |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> x e. ( B X. S ) ) |
103 |
|
1st2nd2 |
|- ( x e. ( B X. S ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
104 |
102 103
|
syl |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
105 |
|
simpl |
|- ( ( a = y /\ b = z ) -> a = y ) |
106 |
105
|
fveq2d |
|- ( ( a = y /\ b = z ) -> ( 1st ` a ) = ( 1st ` y ) ) |
107 |
|
simpr |
|- ( ( a = y /\ b = z ) -> b = z ) |
108 |
107
|
fveq2d |
|- ( ( a = y /\ b = z ) -> ( 2nd ` b ) = ( 2nd ` z ) ) |
109 |
106 108
|
oveq12d |
|- ( ( a = y /\ b = z ) -> ( ( 1st ` a ) .x. ( 2nd ` b ) ) = ( ( 1st ` y ) .x. ( 2nd ` z ) ) ) |
110 |
107
|
fveq2d |
|- ( ( a = y /\ b = z ) -> ( 1st ` b ) = ( 1st ` z ) ) |
111 |
105
|
fveq2d |
|- ( ( a = y /\ b = z ) -> ( 2nd ` a ) = ( 2nd ` y ) ) |
112 |
110 111
|
oveq12d |
|- ( ( a = y /\ b = z ) -> ( ( 1st ` b ) .x. ( 2nd ` a ) ) = ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) |
113 |
109 112
|
oveq12d |
|- ( ( a = y /\ b = z ) -> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) = ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) |
114 |
113
|
oveq2d |
|- ( ( a = y /\ b = z ) -> ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = ( t .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) ) |
115 |
114
|
eqeq1d |
|- ( ( a = y /\ b = z ) -> ( ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. <-> ( t .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) ) |
116 |
115
|
rexbidv |
|- ( ( a = y /\ b = z ) -> ( E. t e. S ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. <-> E. t e. S ( t .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) ) |
117 |
|
oveq1 |
|- ( t = u -> ( t .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) ) |
118 |
117
|
eqeq1d |
|- ( t = u -> ( ( t .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. <-> ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) ) |
119 |
118
|
cbvrexvw |
|- ( E. t e. S ( t .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. <-> E. u e. S ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) |
120 |
116 119
|
bitrdi |
|- ( ( a = y /\ b = z ) -> ( E. t e. S ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. <-> E. u e. S ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) ) |
121 |
120
|
adantl |
|- ( ( ph /\ ( a = y /\ b = z ) ) -> ( E. t e. S ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. <-> E. u e. S ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) ) |
122 |
18 121
|
brab2d |
|- ( ph -> ( y .~ z <-> ( ( y e. W /\ z e. W ) /\ E. u e. S ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) ) ) |
123 |
122
|
biimpa |
|- ( ( ph /\ y .~ z ) -> ( ( y e. W /\ z e. W ) /\ E. u e. S ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) ) |
124 |
123
|
adantlr |
|- ( ( ( ph /\ x .~ y ) /\ y .~ z ) -> ( ( y e. W /\ z e. W ) /\ E. u e. S ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) ) |
125 |
124
|
simplrd |
|- ( ( ( ph /\ x .~ y ) /\ y .~ z ) -> z e. W ) |
126 |
125
|
ad4antr |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> z e. W ) |
127 |
126 6
|
eleqtrdi |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> z e. ( B X. S ) ) |
128 |
|
1st2nd2 |
|- ( z e. ( B X. S ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
129 |
127 128
|
syl |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
130 |
101 46
|
syl |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( 1st ` x ) e. B ) |
131 |
|
xp1st |
|- ( z e. ( B X. S ) -> ( 1st ` z ) e. B ) |
132 |
131 6
|
eleq2s |
|- ( z e. W -> ( 1st ` z ) e. B ) |
133 |
126 132
|
syl |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( 1st ` z ) e. B ) |
134 |
101 59
|
syl |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( 2nd ` x ) e. S ) |
135 |
|
xp2nd |
|- ( z e. ( B X. S ) -> ( 2nd ` z ) e. S ) |
136 |
135 6
|
eleq2s |
|- ( z e. W -> ( 2nd ` z ) e. S ) |
137 |
126 136
|
syl |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( 2nd ` z ) e. S ) |
138 |
|
simp-4r |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> t e. S ) |
139 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> u e. S ) |
140 |
13 4
|
mgpplusg |
|- .x. = ( +g ` ( mulGrp ` R ) ) |
141 |
140
|
submcl |
|- ( ( S e. ( SubMnd ` ( mulGrp ` R ) ) /\ t e. S /\ u e. S ) -> ( t .x. u ) e. S ) |
142 |
98 138 139 141
|
syl3anc |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( t .x. u ) e. S ) |
143 |
36
|
ad5antr |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> y e. W ) |
144 |
143 51
|
syl |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( 2nd ` y ) e. S ) |
145 |
140
|
submcl |
|- ( ( S e. ( SubMnd ` ( mulGrp ` R ) ) /\ ( t .x. u ) e. S /\ ( 2nd ` y ) e. S ) -> ( ( t .x. u ) .x. ( 2nd ` y ) ) e. S ) |
146 |
98 142 144 145
|
syl3anc |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( t .x. u ) .x. ( 2nd ` y ) ) e. S ) |
147 |
40
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> R e. Ring ) |
148 |
99 144
|
sseldd |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( 2nd ` y ) e. B ) |
149 |
99 137
|
sseldd |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( 2nd ` z ) e. B ) |
150 |
1 4 147 130 149
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( 1st ` x ) .x. ( 2nd ` z ) ) e. B ) |
151 |
99 134
|
sseldd |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( 2nd ` x ) e. B ) |
152 |
1 4 147 133 151
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( 1st ` z ) .x. ( 2nd ` x ) ) e. B ) |
153 |
1 4 5 147 148 150 152
|
ringsubdi |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( 2nd ` y ) .x. ( ( ( 1st ` x ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` x ) ) ) ) = ( ( ( 2nd ` y ) .x. ( ( 1st ` x ) .x. ( 2nd ` z ) ) ) .- ( ( 2nd ` y ) .x. ( ( 1st ` z ) .x. ( 2nd ` x ) ) ) ) ) |
154 |
8
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> R e. CRing ) |
155 |
1 4 154 148 130 149
|
crng12d |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( 2nd ` y ) .x. ( ( 1st ` x ) .x. ( 2nd ` z ) ) ) = ( ( 1st ` x ) .x. ( ( 2nd ` y ) .x. ( 2nd ` z ) ) ) ) |
156 |
1 4 154 148 149
|
crngcomd |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( 2nd ` y ) .x. ( 2nd ` z ) ) = ( ( 2nd ` z ) .x. ( 2nd ` y ) ) ) |
157 |
156
|
oveq2d |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( 1st ` x ) .x. ( ( 2nd ` y ) .x. ( 2nd ` z ) ) ) = ( ( 1st ` x ) .x. ( ( 2nd ` z ) .x. ( 2nd ` y ) ) ) ) |
158 |
1 4 154 130 149 148
|
crng12d |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( 1st ` x ) .x. ( ( 2nd ` z ) .x. ( 2nd ` y ) ) ) = ( ( 2nd ` z ) .x. ( ( 1st ` x ) .x. ( 2nd ` y ) ) ) ) |
159 |
155 157 158
|
3eqtrd |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( 2nd ` y ) .x. ( ( 1st ` x ) .x. ( 2nd ` z ) ) ) = ( ( 2nd ` z ) .x. ( ( 1st ` x ) .x. ( 2nd ` y ) ) ) ) |
160 |
1 4 154 148 133 151
|
crng12d |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( 2nd ` y ) .x. ( ( 1st ` z ) .x. ( 2nd ` x ) ) ) = ( ( 1st ` z ) .x. ( ( 2nd ` y ) .x. ( 2nd ` x ) ) ) ) |
161 |
1 4 154 148 151
|
crngcomd |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( 2nd ` y ) .x. ( 2nd ` x ) ) = ( ( 2nd ` x ) .x. ( 2nd ` y ) ) ) |
162 |
161
|
oveq2d |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( 1st ` z ) .x. ( ( 2nd ` y ) .x. ( 2nd ` x ) ) ) = ( ( 1st ` z ) .x. ( ( 2nd ` x ) .x. ( 2nd ` y ) ) ) ) |
163 |
1 4 154 133 151 148
|
crng12d |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( 1st ` z ) .x. ( ( 2nd ` x ) .x. ( 2nd ` y ) ) ) = ( ( 2nd ` x ) .x. ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) |
164 |
160 162 163
|
3eqtrd |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( 2nd ` y ) .x. ( ( 1st ` z ) .x. ( 2nd ` x ) ) ) = ( ( 2nd ` x ) .x. ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) |
165 |
159 164
|
oveq12d |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( ( 2nd ` y ) .x. ( ( 1st ` x ) .x. ( 2nd ` z ) ) ) .- ( ( 2nd ` y ) .x. ( ( 1st ` z ) .x. ( 2nd ` x ) ) ) ) = ( ( ( 2nd ` z ) .x. ( ( 1st ` x ) .x. ( 2nd ` y ) ) ) .- ( ( 2nd ` x ) .x. ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) ) |
166 |
1 4 147 130 148
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( 1st ` x ) .x. ( 2nd ` y ) ) e. B ) |
167 |
143 56
|
syl |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( 1st ` y ) e. B ) |
168 |
1 4 147 167 151
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( 1st ` y ) .x. ( 2nd ` x ) ) e. B ) |
169 |
1 4 5 147 149 166 168
|
ringsubdi |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( 2nd ` z ) .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = ( ( ( 2nd ` z ) .x. ( ( 1st ` x ) .x. ( 2nd ` y ) ) ) .- ( ( 2nd ` z ) .x. ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) ) |
170 |
1 4 147 167 149
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( 1st ` y ) .x. ( 2nd ` z ) ) e. B ) |
171 |
1 4 147 133 148
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( 1st ` z ) .x. ( 2nd ` y ) ) e. B ) |
172 |
1 4 5 147 151 170 171
|
ringsubdi |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( 2nd ` x ) .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = ( ( ( 2nd ` x ) .x. ( ( 1st ` y ) .x. ( 2nd ` z ) ) ) .- ( ( 2nd ` x ) .x. ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) ) |
173 |
169 172
|
oveq12d |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( ( 2nd ` z ) .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) ( +g ` R ) ( ( 2nd ` x ) .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) ) = ( ( ( ( 2nd ` z ) .x. ( ( 1st ` x ) .x. ( 2nd ` y ) ) ) .- ( ( 2nd ` z ) .x. ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) ( +g ` R ) ( ( ( 2nd ` x ) .x. ( ( 1st ` y ) .x. ( 2nd ` z ) ) ) .- ( ( 2nd ` x ) .x. ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) ) ) |
174 |
1 4 154 167 149 151
|
crng12d |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( 1st ` y ) .x. ( ( 2nd ` z ) .x. ( 2nd ` x ) ) ) = ( ( 2nd ` z ) .x. ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) |
175 |
174
|
oveq2d |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( ( 2nd ` z ) .x. ( ( 1st ` x ) .x. ( 2nd ` y ) ) ) .- ( ( 1st ` y ) .x. ( ( 2nd ` z ) .x. ( 2nd ` x ) ) ) ) = ( ( ( 2nd ` z ) .x. ( ( 1st ` x ) .x. ( 2nd ` y ) ) ) .- ( ( 2nd ` z ) .x. ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) ) |
176 |
1 4 154 149 151
|
crngcomd |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( 2nd ` z ) .x. ( 2nd ` x ) ) = ( ( 2nd ` x ) .x. ( 2nd ` z ) ) ) |
177 |
176
|
oveq2d |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( 1st ` y ) .x. ( ( 2nd ` z ) .x. ( 2nd ` x ) ) ) = ( ( 1st ` y ) .x. ( ( 2nd ` x ) .x. ( 2nd ` z ) ) ) ) |
178 |
1 4 154 151 167 149
|
crng12d |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( 2nd ` x ) .x. ( ( 1st ` y ) .x. ( 2nd ` z ) ) ) = ( ( 1st ` y ) .x. ( ( 2nd ` x ) .x. ( 2nd ` z ) ) ) ) |
179 |
177 178
|
eqtr4d |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( 1st ` y ) .x. ( ( 2nd ` z ) .x. ( 2nd ` x ) ) ) = ( ( 2nd ` x ) .x. ( ( 1st ` y ) .x. ( 2nd ` z ) ) ) ) |
180 |
179
|
oveq1d |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( ( 1st ` y ) .x. ( ( 2nd ` z ) .x. ( 2nd ` x ) ) ) .- ( ( 2nd ` x ) .x. ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = ( ( ( 2nd ` x ) .x. ( ( 1st ` y ) .x. ( 2nd ` z ) ) ) .- ( ( 2nd ` x ) .x. ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) ) |
181 |
175 180
|
oveq12d |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( ( ( 2nd ` z ) .x. ( ( 1st ` x ) .x. ( 2nd ` y ) ) ) .- ( ( 1st ` y ) .x. ( ( 2nd ` z ) .x. ( 2nd ` x ) ) ) ) ( +g ` R ) ( ( ( 1st ` y ) .x. ( ( 2nd ` z ) .x. ( 2nd ` x ) ) ) .- ( ( 2nd ` x ) .x. ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) ) = ( ( ( ( 2nd ` z ) .x. ( ( 1st ` x ) .x. ( 2nd ` y ) ) ) .- ( ( 2nd ` z ) .x. ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) ( +g ` R ) ( ( ( 2nd ` x ) .x. ( ( 1st ` y ) .x. ( 2nd ` z ) ) ) .- ( ( 2nd ` x ) .x. ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) ) ) |
182 |
41
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> R e. Grp ) |
183 |
1 4 147 149 166
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( 2nd ` z ) .x. ( ( 1st ` x ) .x. ( 2nd ` y ) ) ) e. B ) |
184 |
1 4 147 149 151
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( 2nd ` z ) .x. ( 2nd ` x ) ) e. B ) |
185 |
1 4 147 167 184
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( 1st ` y ) .x. ( ( 2nd ` z ) .x. ( 2nd ` x ) ) ) e. B ) |
186 |
1 4 147 151 171
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( 2nd ` x ) .x. ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) e. B ) |
187 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
188 |
1 187 5
|
grpnpncan |
|- ( ( R e. Grp /\ ( ( ( 2nd ` z ) .x. ( ( 1st ` x ) .x. ( 2nd ` y ) ) ) e. B /\ ( ( 1st ` y ) .x. ( ( 2nd ` z ) .x. ( 2nd ` x ) ) ) e. B /\ ( ( 2nd ` x ) .x. ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) e. B ) ) -> ( ( ( ( 2nd ` z ) .x. ( ( 1st ` x ) .x. ( 2nd ` y ) ) ) .- ( ( 1st ` y ) .x. ( ( 2nd ` z ) .x. ( 2nd ` x ) ) ) ) ( +g ` R ) ( ( ( 1st ` y ) .x. ( ( 2nd ` z ) .x. ( 2nd ` x ) ) ) .- ( ( 2nd ` x ) .x. ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) ) = ( ( ( 2nd ` z ) .x. ( ( 1st ` x ) .x. ( 2nd ` y ) ) ) .- ( ( 2nd ` x ) .x. ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) ) |
189 |
182 183 185 186 188
|
syl13anc |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( ( ( 2nd ` z ) .x. ( ( 1st ` x ) .x. ( 2nd ` y ) ) ) .- ( ( 1st ` y ) .x. ( ( 2nd ` z ) .x. ( 2nd ` x ) ) ) ) ( +g ` R ) ( ( ( 1st ` y ) .x. ( ( 2nd ` z ) .x. ( 2nd ` x ) ) ) .- ( ( 2nd ` x ) .x. ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) ) = ( ( ( 2nd ` z ) .x. ( ( 1st ` x ) .x. ( 2nd ` y ) ) ) .- ( ( 2nd ` x ) .x. ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) ) |
190 |
173 181 189
|
3eqtr2rd |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( ( 2nd ` z ) .x. ( ( 1st ` x ) .x. ( 2nd ` y ) ) ) .- ( ( 2nd ` x ) .x. ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = ( ( ( 2nd ` z ) .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) ( +g ` R ) ( ( 2nd ` x ) .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) ) ) |
191 |
153 165 190
|
3eqtrd |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( 2nd ` y ) .x. ( ( ( 1st ` x ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` x ) ) ) ) = ( ( ( 2nd ` z ) .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) ( +g ` R ) ( ( 2nd ` x ) .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) ) ) |
192 |
191
|
oveq2d |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( t .x. u ) .x. ( ( 2nd ` y ) .x. ( ( ( 1st ` x ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` x ) ) ) ) ) = ( ( t .x. u ) .x. ( ( ( 2nd ` z ) .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) ( +g ` R ) ( ( 2nd ` x ) .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) ) ) ) |
193 |
99 142
|
sseldd |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( t .x. u ) e. B ) |
194 |
1 5
|
grpsubcl |
|- ( ( R e. Grp /\ ( ( 1st ` x ) .x. ( 2nd ` z ) ) e. B /\ ( ( 1st ` z ) .x. ( 2nd ` x ) ) e. B ) -> ( ( ( 1st ` x ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` x ) ) ) e. B ) |
195 |
182 150 152 194
|
syl3anc |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( ( 1st ` x ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` x ) ) ) e. B ) |
196 |
1 4 147 193 148 195
|
ringassd |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( ( t .x. u ) .x. ( 2nd ` y ) ) .x. ( ( ( 1st ` x ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` x ) ) ) ) = ( ( t .x. u ) .x. ( ( 2nd ` y ) .x. ( ( ( 1st ` x ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` x ) ) ) ) ) ) |
197 |
99 139
|
sseldd |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> u e. B ) |
198 |
99 138
|
sseldd |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> t e. B ) |
199 |
1 4 154 197 149 198
|
cringmul32d |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( u .x. ( 2nd ` z ) ) .x. t ) = ( ( u .x. t ) .x. ( 2nd ` z ) ) ) |
200 |
1 4 154 197 198
|
crngcomd |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( u .x. t ) = ( t .x. u ) ) |
201 |
200
|
oveq1d |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( u .x. t ) .x. ( 2nd ` z ) ) = ( ( t .x. u ) .x. ( 2nd ` z ) ) ) |
202 |
199 201
|
eqtrd |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( u .x. ( 2nd ` z ) ) .x. t ) = ( ( t .x. u ) .x. ( 2nd ` z ) ) ) |
203 |
202
|
oveq1d |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( ( u .x. ( 2nd ` z ) ) .x. t ) .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = ( ( ( t .x. u ) .x. ( 2nd ` z ) ) .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) ) |
204 |
1 4 147 197 149
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( u .x. ( 2nd ` z ) ) e. B ) |
205 |
182 166 168 69
|
syl3anc |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) e. B ) |
206 |
1 4 147 204 198 205
|
ringassd |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( ( u .x. ( 2nd ` z ) ) .x. t ) .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = ( ( u .x. ( 2nd ` z ) ) .x. ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) ) ) |
207 |
1 4 147 193 149 205
|
ringassd |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( ( t .x. u ) .x. ( 2nd ` z ) ) .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = ( ( t .x. u ) .x. ( ( 2nd ` z ) .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) ) ) |
208 |
203 206 207
|
3eqtr3d |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( u .x. ( 2nd ` z ) ) .x. ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) ) = ( ( t .x. u ) .x. ( ( 2nd ` z ) .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) ) ) |
209 |
1 4 154 198 151 197
|
cringmul32d |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( t .x. ( 2nd ` x ) ) .x. u ) = ( ( t .x. u ) .x. ( 2nd ` x ) ) ) |
210 |
209
|
oveq1d |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( ( t .x. ( 2nd ` x ) ) .x. u ) .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = ( ( ( t .x. u ) .x. ( 2nd ` x ) ) .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) ) |
211 |
1 4 147 198 151
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( t .x. ( 2nd ` x ) ) e. B ) |
212 |
1 5
|
grpsubcl |
|- ( ( R e. Grp /\ ( ( 1st ` y ) .x. ( 2nd ` z ) ) e. B /\ ( ( 1st ` z ) .x. ( 2nd ` y ) ) e. B ) -> ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) e. B ) |
213 |
182 170 171 212
|
syl3anc |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) e. B ) |
214 |
1 4 147 211 197 213
|
ringassd |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( ( t .x. ( 2nd ` x ) ) .x. u ) .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = ( ( t .x. ( 2nd ` x ) ) .x. ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) ) ) |
215 |
1 4 147 193 151 213
|
ringassd |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( ( t .x. u ) .x. ( 2nd ` x ) ) .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = ( ( t .x. u ) .x. ( ( 2nd ` x ) .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) ) ) |
216 |
210 214 215
|
3eqtr3d |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( t .x. ( 2nd ` x ) ) .x. ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) ) = ( ( t .x. u ) .x. ( ( 2nd ` x ) .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) ) ) |
217 |
208 216
|
oveq12d |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( ( u .x. ( 2nd ` z ) ) .x. ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) ) ( +g ` R ) ( ( t .x. ( 2nd ` x ) ) .x. ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) ) ) = ( ( ( t .x. u ) .x. ( ( 2nd ` z ) .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) ) ( +g ` R ) ( ( t .x. u ) .x. ( ( 2nd ` x ) .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) ) ) ) |
218 |
1 4 147 149 205
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( 2nd ` z ) .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) e. B ) |
219 |
1 4 147 151 213
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( 2nd ` x ) .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) e. B ) |
220 |
1 187 4
|
ringdi |
|- ( ( R e. Ring /\ ( ( t .x. u ) e. B /\ ( ( 2nd ` z ) .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) e. B /\ ( ( 2nd ` x ) .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) e. B ) ) -> ( ( t .x. u ) .x. ( ( ( 2nd ` z ) .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) ( +g ` R ) ( ( 2nd ` x ) .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) ) ) = ( ( ( t .x. u ) .x. ( ( 2nd ` z ) .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) ) ( +g ` R ) ( ( t .x. u ) .x. ( ( 2nd ` x ) .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) ) ) ) |
221 |
147 193 218 219 220
|
syl13anc |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( t .x. u ) .x. ( ( ( 2nd ` z ) .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) ( +g ` R ) ( ( 2nd ` x ) .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) ) ) = ( ( ( t .x. u ) .x. ( ( 2nd ` z ) .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) ) ( +g ` R ) ( ( t .x. u ) .x. ( ( 2nd ` x ) .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) ) ) ) |
222 |
217 221
|
eqtr4d |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( ( u .x. ( 2nd ` z ) ) .x. ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) ) ( +g ` R ) ( ( t .x. ( 2nd ` x ) ) .x. ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) ) ) = ( ( t .x. u ) .x. ( ( ( 2nd ` z ) .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) ( +g ` R ) ( ( 2nd ` x ) .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) ) ) ) |
223 |
192 196 222
|
3eqtr4d |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( ( t .x. u ) .x. ( 2nd ` y ) ) .x. ( ( ( 1st ` x ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` x ) ) ) ) = ( ( ( u .x. ( 2nd ` z ) ) .x. ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) ) ( +g ` R ) ( ( t .x. ( 2nd ` x ) ) .x. ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) ) ) ) |
224 |
|
simpllr |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) |
225 |
224
|
oveq2d |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( u .x. ( 2nd ` z ) ) .x. ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) ) = ( ( u .x. ( 2nd ` z ) ) .x. .0. ) ) |
226 |
1 4 2 147 204
|
ringrzd |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( u .x. ( 2nd ` z ) ) .x. .0. ) = .0. ) |
227 |
225 226
|
eqtrd |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( u .x. ( 2nd ` z ) ) .x. ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) ) = .0. ) |
228 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) |
229 |
228
|
oveq2d |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( t .x. ( 2nd ` x ) ) .x. ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) ) = ( ( t .x. ( 2nd ` x ) ) .x. .0. ) ) |
230 |
1 4 2 147 211
|
ringrzd |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( t .x. ( 2nd ` x ) ) .x. .0. ) = .0. ) |
231 |
229 230
|
eqtrd |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( t .x. ( 2nd ` x ) ) .x. ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) ) = .0. ) |
232 |
227 231
|
oveq12d |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( ( u .x. ( 2nd ` z ) ) .x. ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) ) ( +g ` R ) ( ( t .x. ( 2nd ` x ) ) .x. ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) ) ) = ( .0. ( +g ` R ) .0. ) ) |
233 |
1 2
|
grpidcl |
|- ( R e. Grp -> .0. e. B ) |
234 |
182 233
|
syl |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> .0. e. B ) |
235 |
1 187 2 182 234
|
grplidd |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( .0. ( +g ` R ) .0. ) = .0. ) |
236 |
223 232 235
|
3eqtrd |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> ( ( ( t .x. u ) .x. ( 2nd ` y ) ) .x. ( ( ( 1st ` x ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` x ) ) ) ) = .0. ) |
237 |
1 7 99 2 4 5 104 129 130 133 134 137 146 236
|
erlbrd |
|- ( ( ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) /\ u e. S ) /\ ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) -> x .~ z ) |
238 |
124
|
simprd |
|- ( ( ( ph /\ x .~ y ) /\ y .~ z ) -> E. u e. S ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) |
239 |
238
|
ad2antrr |
|- ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) -> E. u e. S ( u .x. ( ( ( 1st ` y ) .x. ( 2nd ` z ) ) .- ( ( 1st ` z ) .x. ( 2nd ` y ) ) ) ) = .0. ) |
240 |
237 239
|
r19.29a |
|- ( ( ( ( ( ph /\ x .~ y ) /\ y .~ z ) /\ t e. S ) /\ ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) -> x .~ z ) |
241 |
39
|
adantr |
|- ( ( ( ph /\ x .~ y ) /\ y .~ z ) -> E. t e. S ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` y ) ) .- ( ( 1st ` y ) .x. ( 2nd ` x ) ) ) ) = .0. ) |
242 |
240 241
|
r19.29a |
|- ( ( ( ph /\ x .~ y ) /\ y .~ z ) -> x .~ z ) |
243 |
242
|
anasss |
|- ( ( ph /\ ( x .~ y /\ y .~ z ) ) -> x .~ z ) |
244 |
13 3
|
ringidval |
|- .1. = ( 0g ` ( mulGrp ` R ) ) |
245 |
244
|
subm0cl |
|- ( S e. ( SubMnd ` ( mulGrp ` R ) ) -> .1. e. S ) |
246 |
9 245
|
syl |
|- ( ph -> .1. e. S ) |
247 |
246
|
adantr |
|- ( ( ph /\ x e. W ) -> .1. e. S ) |
248 |
|
oveq1 |
|- ( t = .1. -> ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` x ) ) .- ( ( 1st ` x ) .x. ( 2nd ` x ) ) ) ) = ( .1. .x. ( ( ( 1st ` x ) .x. ( 2nd ` x ) ) .- ( ( 1st ` x ) .x. ( 2nd ` x ) ) ) ) ) |
249 |
248
|
eqeq1d |
|- ( t = .1. -> ( ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` x ) ) .- ( ( 1st ` x ) .x. ( 2nd ` x ) ) ) ) = .0. <-> ( .1. .x. ( ( ( 1st ` x ) .x. ( 2nd ` x ) ) .- ( ( 1st ` x ) .x. ( 2nd ` x ) ) ) ) = .0. ) ) |
250 |
249
|
adantl |
|- ( ( ( ph /\ x e. W ) /\ t = .1. ) -> ( ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` x ) ) .- ( ( 1st ` x ) .x. ( 2nd ` x ) ) ) ) = .0. <-> ( .1. .x. ( ( ( 1st ` x ) .x. ( 2nd ` x ) ) .- ( ( 1st ` x ) .x. ( 2nd ` x ) ) ) ) = .0. ) ) |
251 |
40
|
adantr |
|- ( ( ph /\ x e. W ) -> R e. Ring ) |
252 |
46
|
adantl |
|- ( ( ph /\ x e. W ) -> ( 1st ` x ) e. B ) |
253 |
16
|
adantr |
|- ( ( ph /\ x e. W ) -> S C_ B ) |
254 |
59
|
adantl |
|- ( ( ph /\ x e. W ) -> ( 2nd ` x ) e. S ) |
255 |
253 254
|
sseldd |
|- ( ( ph /\ x e. W ) -> ( 2nd ` x ) e. B ) |
256 |
1 4 251 252 255
|
ringcld |
|- ( ( ph /\ x e. W ) -> ( ( 1st ` x ) .x. ( 2nd ` x ) ) e. B ) |
257 |
1 2 5
|
grpsubid |
|- ( ( R e. Grp /\ ( ( 1st ` x ) .x. ( 2nd ` x ) ) e. B ) -> ( ( ( 1st ` x ) .x. ( 2nd ` x ) ) .- ( ( 1st ` x ) .x. ( 2nd ` x ) ) ) = .0. ) |
258 |
41 256 257
|
syl2an2r |
|- ( ( ph /\ x e. W ) -> ( ( ( 1st ` x ) .x. ( 2nd ` x ) ) .- ( ( 1st ` x ) .x. ( 2nd ` x ) ) ) = .0. ) |
259 |
258
|
oveq2d |
|- ( ( ph /\ x e. W ) -> ( .1. .x. ( ( ( 1st ` x ) .x. ( 2nd ` x ) ) .- ( ( 1st ` x ) .x. ( 2nd ` x ) ) ) ) = ( .1. .x. .0. ) ) |
260 |
41 233
|
syl |
|- ( ph -> .0. e. B ) |
261 |
1 4 3 40 260
|
ringlidmd |
|- ( ph -> ( .1. .x. .0. ) = .0. ) |
262 |
261
|
adantr |
|- ( ( ph /\ x e. W ) -> ( .1. .x. .0. ) = .0. ) |
263 |
259 262
|
eqtrd |
|- ( ( ph /\ x e. W ) -> ( .1. .x. ( ( ( 1st ` x ) .x. ( 2nd ` x ) ) .- ( ( 1st ` x ) .x. ( 2nd ` x ) ) ) ) = .0. ) |
264 |
247 250 263
|
rspcedvd |
|- ( ( ph /\ x e. W ) -> E. t e. S ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` x ) ) .- ( ( 1st ` x ) .x. ( 2nd ` x ) ) ) ) = .0. ) |
265 |
264
|
ex |
|- ( ph -> ( x e. W -> E. t e. S ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` x ) ) .- ( ( 1st ` x ) .x. ( 2nd ` x ) ) ) ) = .0. ) ) |
266 |
265
|
pm4.71d |
|- ( ph -> ( x e. W <-> ( x e. W /\ E. t e. S ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` x ) ) .- ( ( 1st ` x ) .x. ( 2nd ` x ) ) ) ) = .0. ) ) ) |
267 |
|
pm4.24 |
|- ( x e. W <-> ( x e. W /\ x e. W ) ) |
268 |
267
|
anbi1i |
|- ( ( x e. W /\ E. t e. S ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` x ) ) .- ( ( 1st ` x ) .x. ( 2nd ` x ) ) ) ) = .0. ) <-> ( ( x e. W /\ x e. W ) /\ E. t e. S ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` x ) ) .- ( ( 1st ` x ) .x. ( 2nd ` x ) ) ) ) = .0. ) ) |
269 |
266 268
|
bitrdi |
|- ( ph -> ( x e. W <-> ( ( x e. W /\ x e. W ) /\ E. t e. S ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` x ) ) .- ( ( 1st ` x ) .x. ( 2nd ` x ) ) ) ) = .0. ) ) ) |
270 |
|
simpl |
|- ( ( a = x /\ b = x ) -> a = x ) |
271 |
270
|
fveq2d |
|- ( ( a = x /\ b = x ) -> ( 1st ` a ) = ( 1st ` x ) ) |
272 |
|
simpr |
|- ( ( a = x /\ b = x ) -> b = x ) |
273 |
272
|
fveq2d |
|- ( ( a = x /\ b = x ) -> ( 2nd ` b ) = ( 2nd ` x ) ) |
274 |
271 273
|
oveq12d |
|- ( ( a = x /\ b = x ) -> ( ( 1st ` a ) .x. ( 2nd ` b ) ) = ( ( 1st ` x ) .x. ( 2nd ` x ) ) ) |
275 |
272
|
fveq2d |
|- ( ( a = x /\ b = x ) -> ( 1st ` b ) = ( 1st ` x ) ) |
276 |
270
|
fveq2d |
|- ( ( a = x /\ b = x ) -> ( 2nd ` a ) = ( 2nd ` x ) ) |
277 |
275 276
|
oveq12d |
|- ( ( a = x /\ b = x ) -> ( ( 1st ` b ) .x. ( 2nd ` a ) ) = ( ( 1st ` x ) .x. ( 2nd ` x ) ) ) |
278 |
274 277
|
oveq12d |
|- ( ( a = x /\ b = x ) -> ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) = ( ( ( 1st ` x ) .x. ( 2nd ` x ) ) .- ( ( 1st ` x ) .x. ( 2nd ` x ) ) ) ) |
279 |
278
|
oveq2d |
|- ( ( a = x /\ b = x ) -> ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` x ) ) .- ( ( 1st ` x ) .x. ( 2nd ` x ) ) ) ) ) |
280 |
279
|
eqeq1d |
|- ( ( a = x /\ b = x ) -> ( ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. <-> ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` x ) ) .- ( ( 1st ` x ) .x. ( 2nd ` x ) ) ) ) = .0. ) ) |
281 |
280
|
rexbidv |
|- ( ( a = x /\ b = x ) -> ( E. t e. S ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. <-> E. t e. S ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` x ) ) .- ( ( 1st ` x ) .x. ( 2nd ` x ) ) ) ) = .0. ) ) |
282 |
281
|
adantl |
|- ( ( ph /\ ( a = x /\ b = x ) ) -> ( E. t e. S ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. <-> E. t e. S ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` x ) ) .- ( ( 1st ` x ) .x. ( 2nd ` x ) ) ) ) = .0. ) ) |
283 |
18 282
|
brab2d |
|- ( ph -> ( x .~ x <-> ( ( x e. W /\ x e. W ) /\ E. t e. S ( t .x. ( ( ( 1st ` x ) .x. ( 2nd ` x ) ) .- ( ( 1st ` x ) .x. ( 2nd ` x ) ) ) ) = .0. ) ) ) |
284 |
269 283
|
bitr4d |
|- ( ph -> ( x e. W <-> x .~ x ) ) |
285 |
20 97 243 284
|
iserd |
|- ( ph -> .~ Er W ) |