Step |
Hyp |
Ref |
Expression |
1 |
|
rlocval.1 |
|- B = ( Base ` R ) |
2 |
|
rlocval.2 |
|- .0. = ( 0g ` R ) |
3 |
|
rlocval.3 |
|- .x. = ( .r ` R ) |
4 |
|
rlocval.4 |
|- .- = ( -g ` R ) |
5 |
|
erlval.w |
|- W = ( B X. S ) |
6 |
|
erlval.q |
|- .~ = { <. a , b >. | ( ( a e. W /\ b e. W ) /\ E. t e. S ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. ) } |
7 |
|
erlval.20 |
|- ( ph -> S C_ B ) |
8 |
|
simpr |
|- ( ( ph /\ R e. _V ) -> R e. _V ) |
9 |
1
|
fvexi |
|- B e. _V |
10 |
9
|
a1i |
|- ( ( ph /\ R e. _V ) -> B e. _V ) |
11 |
7
|
adantr |
|- ( ( ph /\ R e. _V ) -> S C_ B ) |
12 |
10 11
|
ssexd |
|- ( ( ph /\ R e. _V ) -> S e. _V ) |
13 |
10 12
|
xpexd |
|- ( ( ph /\ R e. _V ) -> ( B X. S ) e. _V ) |
14 |
5 13
|
eqeltrid |
|- ( ( ph /\ R e. _V ) -> W e. _V ) |
15 |
14 14
|
xpexd |
|- ( ( ph /\ R e. _V ) -> ( W X. W ) e. _V ) |
16 |
|
simprll |
|- ( ( ph /\ ( ( a e. W /\ b e. W ) /\ E. t e. S ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. ) ) -> a e. W ) |
17 |
|
simprlr |
|- ( ( ph /\ ( ( a e. W /\ b e. W ) /\ E. t e. S ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. ) ) -> b e. W ) |
18 |
16 17
|
opabssxpd |
|- ( ph -> { <. a , b >. | ( ( a e. W /\ b e. W ) /\ E. t e. S ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. ) } C_ ( W X. W ) ) |
19 |
18
|
adantr |
|- ( ( ph /\ R e. _V ) -> { <. a , b >. | ( ( a e. W /\ b e. W ) /\ E. t e. S ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. ) } C_ ( W X. W ) ) |
20 |
15 19
|
ssexd |
|- ( ( ph /\ R e. _V ) -> { <. a , b >. | ( ( a e. W /\ b e. W ) /\ E. t e. S ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. ) } e. _V ) |
21 |
6 20
|
eqeltrid |
|- ( ( ph /\ R e. _V ) -> .~ e. _V ) |
22 |
|
fvexd |
|- ( ( r = R /\ s = S ) -> ( .r ` r ) e. _V ) |
23 |
|
fveq2 |
|- ( r = R -> ( .r ` r ) = ( .r ` R ) ) |
24 |
23
|
adantr |
|- ( ( r = R /\ s = S ) -> ( .r ` r ) = ( .r ` R ) ) |
25 |
24 3
|
eqtr4di |
|- ( ( r = R /\ s = S ) -> ( .r ` r ) = .x. ) |
26 |
|
fvexd |
|- ( ( ( r = R /\ s = S ) /\ x = .x. ) -> ( Base ` r ) e. _V ) |
27 |
|
vex |
|- s e. _V |
28 |
27
|
a1i |
|- ( ( ( r = R /\ s = S ) /\ x = .x. ) -> s e. _V ) |
29 |
26 28
|
xpexd |
|- ( ( ( r = R /\ s = S ) /\ x = .x. ) -> ( ( Base ` r ) X. s ) e. _V ) |
30 |
|
fveq2 |
|- ( r = R -> ( Base ` r ) = ( Base ` R ) ) |
31 |
30
|
ad2antrr |
|- ( ( ( r = R /\ s = S ) /\ x = .x. ) -> ( Base ` r ) = ( Base ` R ) ) |
32 |
31 1
|
eqtr4di |
|- ( ( ( r = R /\ s = S ) /\ x = .x. ) -> ( Base ` r ) = B ) |
33 |
|
simplr |
|- ( ( ( r = R /\ s = S ) /\ x = .x. ) -> s = S ) |
34 |
32 33
|
xpeq12d |
|- ( ( ( r = R /\ s = S ) /\ x = .x. ) -> ( ( Base ` r ) X. s ) = ( B X. S ) ) |
35 |
34 5
|
eqtr4di |
|- ( ( ( r = R /\ s = S ) /\ x = .x. ) -> ( ( Base ` r ) X. s ) = W ) |
36 |
|
simpr |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> w = W ) |
37 |
36
|
eleq2d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( a e. w <-> a e. W ) ) |
38 |
36
|
eleq2d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( b e. w <-> b e. W ) ) |
39 |
37 38
|
anbi12d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( ( a e. w /\ b e. w ) <-> ( a e. W /\ b e. W ) ) ) |
40 |
33
|
adantr |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> s = S ) |
41 |
|
simplr |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> x = .x. ) |
42 |
|
eqidd |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> t = t ) |
43 |
|
fveq2 |
|- ( r = R -> ( -g ` r ) = ( -g ` R ) ) |
44 |
43
|
ad3antrrr |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( -g ` r ) = ( -g ` R ) ) |
45 |
44 4
|
eqtr4di |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( -g ` r ) = .- ) |
46 |
41
|
oveqd |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( ( 1st ` a ) x ( 2nd ` b ) ) = ( ( 1st ` a ) .x. ( 2nd ` b ) ) ) |
47 |
41
|
oveqd |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( ( 1st ` b ) x ( 2nd ` a ) ) = ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) |
48 |
45 46 47
|
oveq123d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( -g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) = ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) |
49 |
41 42 48
|
oveq123d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( t x ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( -g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) = ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) ) |
50 |
|
fveq2 |
|- ( r = R -> ( 0g ` r ) = ( 0g ` R ) ) |
51 |
50
|
ad3antrrr |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( 0g ` r ) = ( 0g ` R ) ) |
52 |
51 2
|
eqtr4di |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( 0g ` r ) = .0. ) |
53 |
49 52
|
eqeq12d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( ( t x ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( -g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) = ( 0g ` r ) <-> ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. ) ) |
54 |
40 53
|
rexeqbidv |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( E. t e. s ( t x ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( -g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) = ( 0g ` r ) <-> E. t e. S ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. ) ) |
55 |
39 54
|
anbi12d |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> ( ( ( a e. w /\ b e. w ) /\ E. t e. s ( t x ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( -g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) = ( 0g ` r ) ) <-> ( ( a e. W /\ b e. W ) /\ E. t e. S ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. ) ) ) |
56 |
55
|
opabbidv |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> { <. a , b >. | ( ( a e. w /\ b e. w ) /\ E. t e. s ( t x ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( -g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) = ( 0g ` r ) ) } = { <. a , b >. | ( ( a e. W /\ b e. W ) /\ E. t e. S ( t .x. ( ( ( 1st ` a ) .x. ( 2nd ` b ) ) .- ( ( 1st ` b ) .x. ( 2nd ` a ) ) ) ) = .0. ) } ) |
57 |
56 6
|
eqtr4di |
|- ( ( ( ( r = R /\ s = S ) /\ x = .x. ) /\ w = W ) -> { <. a , b >. | ( ( a e. w /\ b e. w ) /\ E. t e. s ( t x ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( -g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) = ( 0g ` r ) ) } = .~ ) |
58 |
29 35 57
|
csbied2 |
|- ( ( ( r = R /\ s = S ) /\ x = .x. ) -> [_ ( ( Base ` r ) X. s ) / w ]_ { <. a , b >. | ( ( a e. w /\ b e. w ) /\ E. t e. s ( t x ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( -g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) = ( 0g ` r ) ) } = .~ ) |
59 |
22 25 58
|
csbied2 |
|- ( ( r = R /\ s = S ) -> [_ ( .r ` r ) / x ]_ [_ ( ( Base ` r ) X. s ) / w ]_ { <. a , b >. | ( ( a e. w /\ b e. w ) /\ E. t e. s ( t x ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( -g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) = ( 0g ` r ) ) } = .~ ) |
60 |
|
df-erl |
|- ~RL = ( r e. _V , s e. _V |-> [_ ( .r ` r ) / x ]_ [_ ( ( Base ` r ) X. s ) / w ]_ { <. a , b >. | ( ( a e. w /\ b e. w ) /\ E. t e. s ( t x ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( -g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) = ( 0g ` r ) ) } ) |
61 |
59 60
|
ovmpoga |
|- ( ( R e. _V /\ S e. _V /\ .~ e. _V ) -> ( R ~RL S ) = .~ ) |
62 |
8 12 21 61
|
syl3anc |
|- ( ( ph /\ R e. _V ) -> ( R ~RL S ) = .~ ) |
63 |
60
|
reldmmpo |
|- Rel dom ~RL |
64 |
63
|
ovprc1 |
|- ( -. R e. _V -> ( R ~RL S ) = (/) ) |
65 |
64
|
adantl |
|- ( ( ph /\ -. R e. _V ) -> ( R ~RL S ) = (/) ) |
66 |
6 18
|
eqsstrid |
|- ( ph -> .~ C_ ( W X. W ) ) |
67 |
66
|
adantr |
|- ( ( ph /\ -. R e. _V ) -> .~ C_ ( W X. W ) ) |
68 |
|
fvprc |
|- ( -. R e. _V -> ( Base ` R ) = (/) ) |
69 |
1 68
|
eqtrid |
|- ( -. R e. _V -> B = (/) ) |
70 |
69
|
xpeq1d |
|- ( -. R e. _V -> ( B X. S ) = ( (/) X. S ) ) |
71 |
|
0xp |
|- ( (/) X. S ) = (/) |
72 |
70 71
|
eqtrdi |
|- ( -. R e. _V -> ( B X. S ) = (/) ) |
73 |
5 72
|
eqtrid |
|- ( -. R e. _V -> W = (/) ) |
74 |
|
id |
|- ( W = (/) -> W = (/) ) |
75 |
74 74
|
xpeq12d |
|- ( W = (/) -> ( W X. W ) = ( (/) X. (/) ) ) |
76 |
|
0xp |
|- ( (/) X. (/) ) = (/) |
77 |
75 76
|
eqtrdi |
|- ( W = (/) -> ( W X. W ) = (/) ) |
78 |
73 77
|
syl |
|- ( -. R e. _V -> ( W X. W ) = (/) ) |
79 |
78
|
adantl |
|- ( ( ph /\ -. R e. _V ) -> ( W X. W ) = (/) ) |
80 |
67 79
|
sseqtrd |
|- ( ( ph /\ -. R e. _V ) -> .~ C_ (/) ) |
81 |
|
ss0 |
|- ( .~ C_ (/) -> .~ = (/) ) |
82 |
80 81
|
syl |
|- ( ( ph /\ -. R e. _V ) -> .~ = (/) ) |
83 |
65 82
|
eqtr4d |
|- ( ( ph /\ -. R e. _V ) -> ( R ~RL S ) = .~ ) |
84 |
62 83
|
pm2.61dan |
|- ( ph -> ( R ~RL S ) = .~ ) |