Description: Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eropr2.1 | |- J = ( A /. .~ ) |
|
eropr2.2 | |- .+^ = { <. <. x , y >. , z >. | E. p e. A E. q e. A ( ( x = [ p ] .~ /\ y = [ q ] .~ ) /\ z = [ ( p .+ q ) ] .~ ) } |
||
eropr2.3 | |- ( ph -> .~ e. X ) |
||
eropr2.4 | |- ( ph -> .~ Er U ) |
||
eropr2.5 | |- ( ph -> A C_ U ) |
||
eropr2.6 | |- ( ph -> .+ : ( A X. A ) --> A ) |
||
eropr2.7 | |- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. A /\ u e. A ) ) ) -> ( ( r .~ s /\ t .~ u ) -> ( r .+ t ) .~ ( s .+ u ) ) ) |
||
Assertion | eroprf2 | |- ( ph -> .+^ : ( J X. J ) --> J ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eropr2.1 | |- J = ( A /. .~ ) |
|
2 | eropr2.2 | |- .+^ = { <. <. x , y >. , z >. | E. p e. A E. q e. A ( ( x = [ p ] .~ /\ y = [ q ] .~ ) /\ z = [ ( p .+ q ) ] .~ ) } |
|
3 | eropr2.3 | |- ( ph -> .~ e. X ) |
|
4 | eropr2.4 | |- ( ph -> .~ Er U ) |
|
5 | eropr2.5 | |- ( ph -> A C_ U ) |
|
6 | eropr2.6 | |- ( ph -> .+ : ( A X. A ) --> A ) |
|
7 | eropr2.7 | |- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. A /\ u e. A ) ) ) -> ( ( r .~ s /\ t .~ u ) -> ( r .+ t ) .~ ( s .+ u ) ) ) |
|
8 | 1 1 3 4 4 4 5 5 5 6 7 2 3 3 1 | eroprf | |- ( ph -> .+^ : ( J X. J ) --> J ) |