Description: Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eropr2.1 | |- J = ( A /. .~ ) | |
| eropr2.2 | |- .+^ = { <. <. x , y >. , z >. | E. p e. A E. q e. A ( ( x = [ p ] .~ /\ y = [ q ] .~ ) /\ z = [ ( p .+ q ) ] .~ ) } | ||
| eropr2.3 | |- ( ph -> .~ e. X ) | ||
| eropr2.4 | |- ( ph -> .~ Er U ) | ||
| eropr2.5 | |- ( ph -> A C_ U ) | ||
| eropr2.6 | |- ( ph -> .+ : ( A X. A ) --> A ) | ||
| eropr2.7 | |- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. A /\ u e. A ) ) ) -> ( ( r .~ s /\ t .~ u ) -> ( r .+ t ) .~ ( s .+ u ) ) ) | ||
| Assertion | eroprf2 | |- ( ph -> .+^ : ( J X. J ) --> J ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eropr2.1 | |- J = ( A /. .~ ) | |
| 2 | eropr2.2 |  |-  .+^ = { <. <. x , y >. , z >. | E. p e. A E. q e. A ( ( x = [ p ] .~ /\ y = [ q ] .~ ) /\ z = [ ( p .+ q ) ] .~ ) } | |
| 3 | eropr2.3 | |- ( ph -> .~ e. X ) | |
| 4 | eropr2.4 | |- ( ph -> .~ Er U ) | |
| 5 | eropr2.5 | |- ( ph -> A C_ U ) | |
| 6 | eropr2.6 | |- ( ph -> .+ : ( A X. A ) --> A ) | |
| 7 | eropr2.7 | |- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. A /\ u e. A ) ) ) -> ( ( r .~ s /\ t .~ u ) -> ( r .+ t ) .~ ( s .+ u ) ) ) | |
| 8 | 1 1 3 4 4 4 5 5 5 6 7 2 3 3 1 | eroprf | |- ( ph -> .+^ : ( J X. J ) --> J ) |