Step |
Hyp |
Ref |
Expression |
1 |
|
eropr.1 |
|- J = ( A /. R ) |
2 |
|
eropr.2 |
|- K = ( B /. S ) |
3 |
|
eropr.3 |
|- ( ph -> T e. Z ) |
4 |
|
eropr.4 |
|- ( ph -> R Er U ) |
5 |
|
eropr.5 |
|- ( ph -> S Er V ) |
6 |
|
eropr.6 |
|- ( ph -> T Er W ) |
7 |
|
eropr.7 |
|- ( ph -> A C_ U ) |
8 |
|
eropr.8 |
|- ( ph -> B C_ V ) |
9 |
|
eropr.9 |
|- ( ph -> C C_ W ) |
10 |
|
eropr.10 |
|- ( ph -> .+ : ( A X. B ) --> C ) |
11 |
|
eropr.11 |
|- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( ( r R s /\ t S u ) -> ( r .+ t ) T ( s .+ u ) ) ) |
12 |
|
eropr.12 |
|- .+^ = { <. <. x , y >. , z >. | E. p e. A E. q e. B ( ( x = [ p ] R /\ y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) } |
13 |
|
eropr.13 |
|- ( ph -> R e. X ) |
14 |
|
eropr.14 |
|- ( ph -> S e. Y ) |
15 |
1 2 3 4 5 6 7 8 9 10 11 12
|
erovlem |
|- ( ph -> .+^ = ( x e. J , y e. K |-> ( iota z E. p e. A E. q e. B ( ( x = [ p ] R /\ y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) ) ) |
16 |
15
|
3ad2ant1 |
|- ( ( ph /\ P e. A /\ Q e. B ) -> .+^ = ( x e. J , y e. K |-> ( iota z E. p e. A E. q e. B ( ( x = [ p ] R /\ y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) ) ) |
17 |
|
simprl |
|- ( ( ( ph /\ P e. A /\ Q e. B ) /\ ( x = [ P ] R /\ y = [ Q ] S ) ) -> x = [ P ] R ) |
18 |
17
|
eqeq1d |
|- ( ( ( ph /\ P e. A /\ Q e. B ) /\ ( x = [ P ] R /\ y = [ Q ] S ) ) -> ( x = [ p ] R <-> [ P ] R = [ p ] R ) ) |
19 |
|
simprr |
|- ( ( ( ph /\ P e. A /\ Q e. B ) /\ ( x = [ P ] R /\ y = [ Q ] S ) ) -> y = [ Q ] S ) |
20 |
19
|
eqeq1d |
|- ( ( ( ph /\ P e. A /\ Q e. B ) /\ ( x = [ P ] R /\ y = [ Q ] S ) ) -> ( y = [ q ] S <-> [ Q ] S = [ q ] S ) ) |
21 |
18 20
|
anbi12d |
|- ( ( ( ph /\ P e. A /\ Q e. B ) /\ ( x = [ P ] R /\ y = [ Q ] S ) ) -> ( ( x = [ p ] R /\ y = [ q ] S ) <-> ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) ) ) |
22 |
21
|
anbi1d |
|- ( ( ( ph /\ P e. A /\ Q e. B ) /\ ( x = [ P ] R /\ y = [ Q ] S ) ) -> ( ( ( x = [ p ] R /\ y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) <-> ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) ) |
23 |
22
|
2rexbidv |
|- ( ( ( ph /\ P e. A /\ Q e. B ) /\ ( x = [ P ] R /\ y = [ Q ] S ) ) -> ( E. p e. A E. q e. B ( ( x = [ p ] R /\ y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) <-> E. p e. A E. q e. B ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) ) |
24 |
23
|
iotabidv |
|- ( ( ( ph /\ P e. A /\ Q e. B ) /\ ( x = [ P ] R /\ y = [ Q ] S ) ) -> ( iota z E. p e. A E. q e. B ( ( x = [ p ] R /\ y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) = ( iota z E. p e. A E. q e. B ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) ) |
25 |
|
ecelqsg |
|- ( ( R e. X /\ P e. A ) -> [ P ] R e. ( A /. R ) ) |
26 |
25 1
|
eleqtrrdi |
|- ( ( R e. X /\ P e. A ) -> [ P ] R e. J ) |
27 |
13 26
|
sylan |
|- ( ( ph /\ P e. A ) -> [ P ] R e. J ) |
28 |
27
|
3adant3 |
|- ( ( ph /\ P e. A /\ Q e. B ) -> [ P ] R e. J ) |
29 |
|
ecelqsg |
|- ( ( S e. Y /\ Q e. B ) -> [ Q ] S e. ( B /. S ) ) |
30 |
29 2
|
eleqtrrdi |
|- ( ( S e. Y /\ Q e. B ) -> [ Q ] S e. K ) |
31 |
14 30
|
sylan |
|- ( ( ph /\ Q e. B ) -> [ Q ] S e. K ) |
32 |
31
|
3adant2 |
|- ( ( ph /\ P e. A /\ Q e. B ) -> [ Q ] S e. K ) |
33 |
|
iotaex |
|- ( iota z E. p e. A E. q e. B ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) e. _V |
34 |
33
|
a1i |
|- ( ( ph /\ P e. A /\ Q e. B ) -> ( iota z E. p e. A E. q e. B ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) e. _V ) |
35 |
16 24 28 32 34
|
ovmpod |
|- ( ( ph /\ P e. A /\ Q e. B ) -> ( [ P ] R .+^ [ Q ] S ) = ( iota z E. p e. A E. q e. B ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) ) |
36 |
|
eqid |
|- [ P ] R = [ P ] R |
37 |
|
eqid |
|- [ Q ] S = [ Q ] S |
38 |
36 37
|
pm3.2i |
|- ( [ P ] R = [ P ] R /\ [ Q ] S = [ Q ] S ) |
39 |
|
eqid |
|- [ ( P .+ Q ) ] T = [ ( P .+ Q ) ] T |
40 |
38 39
|
pm3.2i |
|- ( ( [ P ] R = [ P ] R /\ [ Q ] S = [ Q ] S ) /\ [ ( P .+ Q ) ] T = [ ( P .+ Q ) ] T ) |
41 |
|
eceq1 |
|- ( p = P -> [ p ] R = [ P ] R ) |
42 |
41
|
eqeq2d |
|- ( p = P -> ( [ P ] R = [ p ] R <-> [ P ] R = [ P ] R ) ) |
43 |
42
|
anbi1d |
|- ( p = P -> ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) <-> ( [ P ] R = [ P ] R /\ [ Q ] S = [ q ] S ) ) ) |
44 |
|
oveq1 |
|- ( p = P -> ( p .+ q ) = ( P .+ q ) ) |
45 |
44
|
eceq1d |
|- ( p = P -> [ ( p .+ q ) ] T = [ ( P .+ q ) ] T ) |
46 |
45
|
eqeq2d |
|- ( p = P -> ( [ ( P .+ Q ) ] T = [ ( p .+ q ) ] T <-> [ ( P .+ Q ) ] T = [ ( P .+ q ) ] T ) ) |
47 |
43 46
|
anbi12d |
|- ( p = P -> ( ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) /\ [ ( P .+ Q ) ] T = [ ( p .+ q ) ] T ) <-> ( ( [ P ] R = [ P ] R /\ [ Q ] S = [ q ] S ) /\ [ ( P .+ Q ) ] T = [ ( P .+ q ) ] T ) ) ) |
48 |
|
eceq1 |
|- ( q = Q -> [ q ] S = [ Q ] S ) |
49 |
48
|
eqeq2d |
|- ( q = Q -> ( [ Q ] S = [ q ] S <-> [ Q ] S = [ Q ] S ) ) |
50 |
49
|
anbi2d |
|- ( q = Q -> ( ( [ P ] R = [ P ] R /\ [ Q ] S = [ q ] S ) <-> ( [ P ] R = [ P ] R /\ [ Q ] S = [ Q ] S ) ) ) |
51 |
|
oveq2 |
|- ( q = Q -> ( P .+ q ) = ( P .+ Q ) ) |
52 |
51
|
eceq1d |
|- ( q = Q -> [ ( P .+ q ) ] T = [ ( P .+ Q ) ] T ) |
53 |
52
|
eqeq2d |
|- ( q = Q -> ( [ ( P .+ Q ) ] T = [ ( P .+ q ) ] T <-> [ ( P .+ Q ) ] T = [ ( P .+ Q ) ] T ) ) |
54 |
50 53
|
anbi12d |
|- ( q = Q -> ( ( ( [ P ] R = [ P ] R /\ [ Q ] S = [ q ] S ) /\ [ ( P .+ Q ) ] T = [ ( P .+ q ) ] T ) <-> ( ( [ P ] R = [ P ] R /\ [ Q ] S = [ Q ] S ) /\ [ ( P .+ Q ) ] T = [ ( P .+ Q ) ] T ) ) ) |
55 |
47 54
|
rspc2ev |
|- ( ( P e. A /\ Q e. B /\ ( ( [ P ] R = [ P ] R /\ [ Q ] S = [ Q ] S ) /\ [ ( P .+ Q ) ] T = [ ( P .+ Q ) ] T ) ) -> E. p e. A E. q e. B ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) /\ [ ( P .+ Q ) ] T = [ ( p .+ q ) ] T ) ) |
56 |
40 55
|
mp3an3 |
|- ( ( P e. A /\ Q e. B ) -> E. p e. A E. q e. B ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) /\ [ ( P .+ Q ) ] T = [ ( p .+ q ) ] T ) ) |
57 |
56
|
3adant1 |
|- ( ( ph /\ P e. A /\ Q e. B ) -> E. p e. A E. q e. B ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) /\ [ ( P .+ Q ) ] T = [ ( p .+ q ) ] T ) ) |
58 |
|
ecexg |
|- ( T e. Z -> [ ( P .+ Q ) ] T e. _V ) |
59 |
3 58
|
syl |
|- ( ph -> [ ( P .+ Q ) ] T e. _V ) |
60 |
59
|
3ad2ant1 |
|- ( ( ph /\ P e. A /\ Q e. B ) -> [ ( P .+ Q ) ] T e. _V ) |
61 |
|
simp1 |
|- ( ( ph /\ P e. A /\ Q e. B ) -> ph ) |
62 |
1 2 3 4 5 6 7 8 9 10 11
|
eroveu |
|- ( ( ph /\ ( [ P ] R e. J /\ [ Q ] S e. K ) ) -> E! z E. p e. A E. q e. B ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) |
63 |
61 28 32 62
|
syl12anc |
|- ( ( ph /\ P e. A /\ Q e. B ) -> E! z E. p e. A E. q e. B ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) |
64 |
|
simpr |
|- ( ( ( ph /\ P e. A /\ Q e. B ) /\ z = [ ( P .+ Q ) ] T ) -> z = [ ( P .+ Q ) ] T ) |
65 |
64
|
eqeq1d |
|- ( ( ( ph /\ P e. A /\ Q e. B ) /\ z = [ ( P .+ Q ) ] T ) -> ( z = [ ( p .+ q ) ] T <-> [ ( P .+ Q ) ] T = [ ( p .+ q ) ] T ) ) |
66 |
65
|
anbi2d |
|- ( ( ( ph /\ P e. A /\ Q e. B ) /\ z = [ ( P .+ Q ) ] T ) -> ( ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) <-> ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) /\ [ ( P .+ Q ) ] T = [ ( p .+ q ) ] T ) ) ) |
67 |
66
|
2rexbidv |
|- ( ( ( ph /\ P e. A /\ Q e. B ) /\ z = [ ( P .+ Q ) ] T ) -> ( E. p e. A E. q e. B ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) <-> E. p e. A E. q e. B ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) /\ [ ( P .+ Q ) ] T = [ ( p .+ q ) ] T ) ) ) |
68 |
60 63 67
|
iota2d |
|- ( ( ph /\ P e. A /\ Q e. B ) -> ( E. p e. A E. q e. B ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) /\ [ ( P .+ Q ) ] T = [ ( p .+ q ) ] T ) <-> ( iota z E. p e. A E. q e. B ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) = [ ( P .+ Q ) ] T ) ) |
69 |
57 68
|
mpbid |
|- ( ( ph /\ P e. A /\ Q e. B ) -> ( iota z E. p e. A E. q e. B ( ( [ P ] R = [ p ] R /\ [ Q ] S = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) = [ ( P .+ Q ) ] T ) |
70 |
35 69
|
eqtrd |
|- ( ( ph /\ P e. A /\ Q e. B ) -> ( [ P ] R .+^ [ Q ] S ) = [ ( P .+ Q ) ] T ) |