Step |
Hyp |
Ref |
Expression |
1 |
|
eropr.1 |
|- J = ( A /. R ) |
2 |
|
eropr.2 |
|- K = ( B /. S ) |
3 |
|
eropr.3 |
|- ( ph -> T e. Z ) |
4 |
|
eropr.4 |
|- ( ph -> R Er U ) |
5 |
|
eropr.5 |
|- ( ph -> S Er V ) |
6 |
|
eropr.6 |
|- ( ph -> T Er W ) |
7 |
|
eropr.7 |
|- ( ph -> A C_ U ) |
8 |
|
eropr.8 |
|- ( ph -> B C_ V ) |
9 |
|
eropr.9 |
|- ( ph -> C C_ W ) |
10 |
|
eropr.10 |
|- ( ph -> .+ : ( A X. B ) --> C ) |
11 |
|
eropr.11 |
|- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( ( r R s /\ t S u ) -> ( r .+ t ) T ( s .+ u ) ) ) |
12 |
|
elqsi |
|- ( X e. ( A /. R ) -> E. p e. A X = [ p ] R ) |
13 |
12 1
|
eleq2s |
|- ( X e. J -> E. p e. A X = [ p ] R ) |
14 |
|
elqsi |
|- ( Y e. ( B /. S ) -> E. q e. B Y = [ q ] S ) |
15 |
14 2
|
eleq2s |
|- ( Y e. K -> E. q e. B Y = [ q ] S ) |
16 |
13 15
|
anim12i |
|- ( ( X e. J /\ Y e. K ) -> ( E. p e. A X = [ p ] R /\ E. q e. B Y = [ q ] S ) ) |
17 |
16
|
adantl |
|- ( ( ph /\ ( X e. J /\ Y e. K ) ) -> ( E. p e. A X = [ p ] R /\ E. q e. B Y = [ q ] S ) ) |
18 |
|
reeanv |
|- ( E. p e. A E. q e. B ( X = [ p ] R /\ Y = [ q ] S ) <-> ( E. p e. A X = [ p ] R /\ E. q e. B Y = [ q ] S ) ) |
19 |
17 18
|
sylibr |
|- ( ( ph /\ ( X e. J /\ Y e. K ) ) -> E. p e. A E. q e. B ( X = [ p ] R /\ Y = [ q ] S ) ) |
20 |
3
|
adantr |
|- ( ( ph /\ ( X e. J /\ Y e. K ) ) -> T e. Z ) |
21 |
|
ecexg |
|- ( T e. Z -> [ ( p .+ q ) ] T e. _V ) |
22 |
|
elisset |
|- ( [ ( p .+ q ) ] T e. _V -> E. z z = [ ( p .+ q ) ] T ) |
23 |
20 21 22
|
3syl |
|- ( ( ph /\ ( X e. J /\ Y e. K ) ) -> E. z z = [ ( p .+ q ) ] T ) |
24 |
23
|
biantrud |
|- ( ( ph /\ ( X e. J /\ Y e. K ) ) -> ( ( X = [ p ] R /\ Y = [ q ] S ) <-> ( ( X = [ p ] R /\ Y = [ q ] S ) /\ E. z z = [ ( p .+ q ) ] T ) ) ) |
25 |
24
|
2rexbidv |
|- ( ( ph /\ ( X e. J /\ Y e. K ) ) -> ( E. p e. A E. q e. B ( X = [ p ] R /\ Y = [ q ] S ) <-> E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ E. z z = [ ( p .+ q ) ] T ) ) ) |
26 |
19 25
|
mpbid |
|- ( ( ph /\ ( X e. J /\ Y e. K ) ) -> E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ E. z z = [ ( p .+ q ) ] T ) ) |
27 |
|
19.42v |
|- ( E. z ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) <-> ( ( X = [ p ] R /\ Y = [ q ] S ) /\ E. z z = [ ( p .+ q ) ] T ) ) |
28 |
27
|
bicomi |
|- ( ( ( X = [ p ] R /\ Y = [ q ] S ) /\ E. z z = [ ( p .+ q ) ] T ) <-> E. z ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) |
29 |
28
|
rexbii |
|- ( E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ E. z z = [ ( p .+ q ) ] T ) <-> E. q e. B E. z ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) |
30 |
|
rexcom4 |
|- ( E. q e. B E. z ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) <-> E. z E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) |
31 |
29 30
|
bitri |
|- ( E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ E. z z = [ ( p .+ q ) ] T ) <-> E. z E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) |
32 |
31
|
rexbii |
|- ( E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ E. z z = [ ( p .+ q ) ] T ) <-> E. p e. A E. z E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) |
33 |
|
rexcom4 |
|- ( E. p e. A E. z E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) <-> E. z E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) |
34 |
32 33
|
bitri |
|- ( E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ E. z z = [ ( p .+ q ) ] T ) <-> E. z E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) |
35 |
26 34
|
sylib |
|- ( ( ph /\ ( X e. J /\ Y e. K ) ) -> E. z E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) |
36 |
|
reeanv |
|- ( E. r e. A E. s e. A ( E. t e. B ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) /\ E. u e. B ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) <-> ( E. r e. A E. t e. B ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) /\ E. s e. A E. u e. B ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) ) |
37 |
|
eceq1 |
|- ( p = r -> [ p ] R = [ r ] R ) |
38 |
37
|
eqeq2d |
|- ( p = r -> ( X = [ p ] R <-> X = [ r ] R ) ) |
39 |
38
|
anbi1d |
|- ( p = r -> ( ( X = [ p ] R /\ Y = [ q ] S ) <-> ( X = [ r ] R /\ Y = [ q ] S ) ) ) |
40 |
|
oveq1 |
|- ( p = r -> ( p .+ q ) = ( r .+ q ) ) |
41 |
40
|
eceq1d |
|- ( p = r -> [ ( p .+ q ) ] T = [ ( r .+ q ) ] T ) |
42 |
41
|
eqeq2d |
|- ( p = r -> ( z = [ ( p .+ q ) ] T <-> z = [ ( r .+ q ) ] T ) ) |
43 |
39 42
|
anbi12d |
|- ( p = r -> ( ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) <-> ( ( X = [ r ] R /\ Y = [ q ] S ) /\ z = [ ( r .+ q ) ] T ) ) ) |
44 |
|
eceq1 |
|- ( q = t -> [ q ] S = [ t ] S ) |
45 |
44
|
eqeq2d |
|- ( q = t -> ( Y = [ q ] S <-> Y = [ t ] S ) ) |
46 |
45
|
anbi2d |
|- ( q = t -> ( ( X = [ r ] R /\ Y = [ q ] S ) <-> ( X = [ r ] R /\ Y = [ t ] S ) ) ) |
47 |
|
oveq2 |
|- ( q = t -> ( r .+ q ) = ( r .+ t ) ) |
48 |
47
|
eceq1d |
|- ( q = t -> [ ( r .+ q ) ] T = [ ( r .+ t ) ] T ) |
49 |
48
|
eqeq2d |
|- ( q = t -> ( z = [ ( r .+ q ) ] T <-> z = [ ( r .+ t ) ] T ) ) |
50 |
46 49
|
anbi12d |
|- ( q = t -> ( ( ( X = [ r ] R /\ Y = [ q ] S ) /\ z = [ ( r .+ q ) ] T ) <-> ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) ) ) |
51 |
43 50
|
cbvrex2vw |
|- ( E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) <-> E. r e. A E. t e. B ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) ) |
52 |
|
eceq1 |
|- ( p = s -> [ p ] R = [ s ] R ) |
53 |
52
|
eqeq2d |
|- ( p = s -> ( X = [ p ] R <-> X = [ s ] R ) ) |
54 |
53
|
anbi1d |
|- ( p = s -> ( ( X = [ p ] R /\ Y = [ q ] S ) <-> ( X = [ s ] R /\ Y = [ q ] S ) ) ) |
55 |
|
oveq1 |
|- ( p = s -> ( p .+ q ) = ( s .+ q ) ) |
56 |
55
|
eceq1d |
|- ( p = s -> [ ( p .+ q ) ] T = [ ( s .+ q ) ] T ) |
57 |
56
|
eqeq2d |
|- ( p = s -> ( w = [ ( p .+ q ) ] T <-> w = [ ( s .+ q ) ] T ) ) |
58 |
54 57
|
anbi12d |
|- ( p = s -> ( ( ( X = [ p ] R /\ Y = [ q ] S ) /\ w = [ ( p .+ q ) ] T ) <-> ( ( X = [ s ] R /\ Y = [ q ] S ) /\ w = [ ( s .+ q ) ] T ) ) ) |
59 |
|
eceq1 |
|- ( q = u -> [ q ] S = [ u ] S ) |
60 |
59
|
eqeq2d |
|- ( q = u -> ( Y = [ q ] S <-> Y = [ u ] S ) ) |
61 |
60
|
anbi2d |
|- ( q = u -> ( ( X = [ s ] R /\ Y = [ q ] S ) <-> ( X = [ s ] R /\ Y = [ u ] S ) ) ) |
62 |
|
oveq2 |
|- ( q = u -> ( s .+ q ) = ( s .+ u ) ) |
63 |
62
|
eceq1d |
|- ( q = u -> [ ( s .+ q ) ] T = [ ( s .+ u ) ] T ) |
64 |
63
|
eqeq2d |
|- ( q = u -> ( w = [ ( s .+ q ) ] T <-> w = [ ( s .+ u ) ] T ) ) |
65 |
61 64
|
anbi12d |
|- ( q = u -> ( ( ( X = [ s ] R /\ Y = [ q ] S ) /\ w = [ ( s .+ q ) ] T ) <-> ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) ) |
66 |
58 65
|
cbvrex2vw |
|- ( E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ w = [ ( p .+ q ) ] T ) <-> E. s e. A E. u e. B ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) |
67 |
51 66
|
anbi12i |
|- ( ( E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) /\ E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ w = [ ( p .+ q ) ] T ) ) <-> ( E. r e. A E. t e. B ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) /\ E. s e. A E. u e. B ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) ) |
68 |
36 67
|
bitr4i |
|- ( E. r e. A E. s e. A ( E. t e. B ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) /\ E. u e. B ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) <-> ( E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) /\ E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ w = [ ( p .+ q ) ] T ) ) ) |
69 |
|
reeanv |
|- ( E. t e. B E. u e. B ( ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) /\ ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) <-> ( E. t e. B ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) /\ E. u e. B ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) ) |
70 |
4
|
adantr |
|- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> R Er U ) |
71 |
7
|
adantr |
|- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> A C_ U ) |
72 |
|
simprll |
|- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> r e. A ) |
73 |
71 72
|
sseldd |
|- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> r e. U ) |
74 |
70 73
|
erth |
|- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( r R s <-> [ r ] R = [ s ] R ) ) |
75 |
5
|
adantr |
|- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> S Er V ) |
76 |
8
|
adantr |
|- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> B C_ V ) |
77 |
|
simprrl |
|- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> t e. B ) |
78 |
76 77
|
sseldd |
|- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> t e. V ) |
79 |
75 78
|
erth |
|- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( t S u <-> [ t ] S = [ u ] S ) ) |
80 |
74 79
|
anbi12d |
|- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( ( r R s /\ t S u ) <-> ( [ r ] R = [ s ] R /\ [ t ] S = [ u ] S ) ) ) |
81 |
6
|
adantr |
|- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> T Er W ) |
82 |
9
|
adantr |
|- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> C C_ W ) |
83 |
10
|
adantr |
|- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> .+ : ( A X. B ) --> C ) |
84 |
83 72 77
|
fovrnd |
|- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( r .+ t ) e. C ) |
85 |
82 84
|
sseldd |
|- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( r .+ t ) e. W ) |
86 |
81 85
|
erth |
|- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( ( r .+ t ) T ( s .+ u ) <-> [ ( r .+ t ) ] T = [ ( s .+ u ) ] T ) ) |
87 |
11 80 86
|
3imtr3d |
|- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( ( [ r ] R = [ s ] R /\ [ t ] S = [ u ] S ) -> [ ( r .+ t ) ] T = [ ( s .+ u ) ] T ) ) |
88 |
|
eqeq2 |
|- ( w = [ ( s .+ u ) ] T -> ( [ ( r .+ t ) ] T = w <-> [ ( r .+ t ) ] T = [ ( s .+ u ) ] T ) ) |
89 |
88
|
biimprcd |
|- ( [ ( r .+ t ) ] T = [ ( s .+ u ) ] T -> ( w = [ ( s .+ u ) ] T -> [ ( r .+ t ) ] T = w ) ) |
90 |
87 89
|
syl6 |
|- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( ( [ r ] R = [ s ] R /\ [ t ] S = [ u ] S ) -> ( w = [ ( s .+ u ) ] T -> [ ( r .+ t ) ] T = w ) ) ) |
91 |
90
|
impd |
|- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( ( ( [ r ] R = [ s ] R /\ [ t ] S = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) -> [ ( r .+ t ) ] T = w ) ) |
92 |
|
eqeq1 |
|- ( X = [ r ] R -> ( X = [ s ] R <-> [ r ] R = [ s ] R ) ) |
93 |
|
eqeq1 |
|- ( Y = [ t ] S -> ( Y = [ u ] S <-> [ t ] S = [ u ] S ) ) |
94 |
92 93
|
bi2anan9 |
|- ( ( X = [ r ] R /\ Y = [ t ] S ) -> ( ( X = [ s ] R /\ Y = [ u ] S ) <-> ( [ r ] R = [ s ] R /\ [ t ] S = [ u ] S ) ) ) |
95 |
94
|
anbi1d |
|- ( ( X = [ r ] R /\ Y = [ t ] S ) -> ( ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) <-> ( ( [ r ] R = [ s ] R /\ [ t ] S = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) ) |
96 |
95
|
adantr |
|- ( ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) -> ( ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) <-> ( ( [ r ] R = [ s ] R /\ [ t ] S = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) ) |
97 |
|
eqeq1 |
|- ( z = [ ( r .+ t ) ] T -> ( z = w <-> [ ( r .+ t ) ] T = w ) ) |
98 |
97
|
adantl |
|- ( ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) -> ( z = w <-> [ ( r .+ t ) ] T = w ) ) |
99 |
96 98
|
imbi12d |
|- ( ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) -> ( ( ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) -> z = w ) <-> ( ( ( [ r ] R = [ s ] R /\ [ t ] S = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) -> [ ( r .+ t ) ] T = w ) ) ) |
100 |
91 99
|
syl5ibrcom |
|- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) -> ( ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) -> z = w ) ) ) |
101 |
100
|
impd |
|- ( ( ph /\ ( ( r e. A /\ s e. A ) /\ ( t e. B /\ u e. B ) ) ) -> ( ( ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) /\ ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) -> z = w ) ) |
102 |
101
|
anassrs |
|- ( ( ( ph /\ ( r e. A /\ s e. A ) ) /\ ( t e. B /\ u e. B ) ) -> ( ( ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) /\ ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) -> z = w ) ) |
103 |
102
|
rexlimdvva |
|- ( ( ph /\ ( r e. A /\ s e. A ) ) -> ( E. t e. B E. u e. B ( ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) /\ ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) -> z = w ) ) |
104 |
69 103
|
syl5bir |
|- ( ( ph /\ ( r e. A /\ s e. A ) ) -> ( ( E. t e. B ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) /\ E. u e. B ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) -> z = w ) ) |
105 |
104
|
rexlimdvva |
|- ( ph -> ( E. r e. A E. s e. A ( E. t e. B ( ( X = [ r ] R /\ Y = [ t ] S ) /\ z = [ ( r .+ t ) ] T ) /\ E. u e. B ( ( X = [ s ] R /\ Y = [ u ] S ) /\ w = [ ( s .+ u ) ] T ) ) -> z = w ) ) |
106 |
68 105
|
syl5bir |
|- ( ph -> ( ( E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) /\ E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ w = [ ( p .+ q ) ] T ) ) -> z = w ) ) |
107 |
106
|
adantr |
|- ( ( ph /\ ( X e. J /\ Y e. K ) ) -> ( ( E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) /\ E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ w = [ ( p .+ q ) ] T ) ) -> z = w ) ) |
108 |
107
|
alrimivv |
|- ( ( ph /\ ( X e. J /\ Y e. K ) ) -> A. z A. w ( ( E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) /\ E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ w = [ ( p .+ q ) ] T ) ) -> z = w ) ) |
109 |
|
eqeq1 |
|- ( z = w -> ( z = [ ( p .+ q ) ] T <-> w = [ ( p .+ q ) ] T ) ) |
110 |
109
|
anbi2d |
|- ( z = w -> ( ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) <-> ( ( X = [ p ] R /\ Y = [ q ] S ) /\ w = [ ( p .+ q ) ] T ) ) ) |
111 |
110
|
2rexbidv |
|- ( z = w -> ( E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) <-> E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ w = [ ( p .+ q ) ] T ) ) ) |
112 |
111
|
eu4 |
|- ( E! z E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) <-> ( E. z E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) /\ A. z A. w ( ( E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) /\ E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ w = [ ( p .+ q ) ] T ) ) -> z = w ) ) ) |
113 |
35 108 112
|
sylanbrc |
|- ( ( ph /\ ( X e. J /\ Y e. K ) ) -> E! z E. p e. A E. q e. B ( ( X = [ p ] R /\ Y = [ q ] S ) /\ z = [ ( p .+ q ) ] T ) ) |