Metamath Proof Explorer


Theorem erref

Description: An equivalence relation is reflexive on its field. Compare Theorem 3M of Enderton p. 56. (Contributed by Mario Carneiro, 6-May-2013) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypotheses ersymb.1
|- ( ph -> R Er X )
erref.2
|- ( ph -> A e. X )
Assertion erref
|- ( ph -> A R A )

Proof

Step Hyp Ref Expression
1 ersymb.1
 |-  ( ph -> R Er X )
2 erref.2
 |-  ( ph -> A e. X )
3 erdm
 |-  ( R Er X -> dom R = X )
4 1 3 syl
 |-  ( ph -> dom R = X )
5 2 4 eleqtrrd
 |-  ( ph -> A e. dom R )
6 eldmg
 |-  ( A e. X -> ( A e. dom R <-> E. x A R x ) )
7 2 6 syl
 |-  ( ph -> ( A e. dom R <-> E. x A R x ) )
8 5 7 mpbid
 |-  ( ph -> E. x A R x )
9 1 adantr
 |-  ( ( ph /\ A R x ) -> R Er X )
10 simpr
 |-  ( ( ph /\ A R x ) -> A R x )
11 9 10 10 ertr4d
 |-  ( ( ph /\ A R x ) -> A R A )
12 8 11 exlimddv
 |-  ( ph -> A R A )