Step |
Hyp |
Ref |
Expression |
1 |
|
ersymb.1 |
|- ( ph -> R Er X ) |
2 |
|
erref.2 |
|- ( ph -> A e. X ) |
3 |
|
erdm |
|- ( R Er X -> dom R = X ) |
4 |
1 3
|
syl |
|- ( ph -> dom R = X ) |
5 |
2 4
|
eleqtrrd |
|- ( ph -> A e. dom R ) |
6 |
|
eldmg |
|- ( A e. X -> ( A e. dom R <-> E. x A R x ) ) |
7 |
2 6
|
syl |
|- ( ph -> ( A e. dom R <-> E. x A R x ) ) |
8 |
5 7
|
mpbid |
|- ( ph -> E. x A R x ) |
9 |
1
|
adantr |
|- ( ( ph /\ A R x ) -> R Er X ) |
10 |
|
simpr |
|- ( ( ph /\ A R x ) -> A R x ) |
11 |
9 10 10
|
ertr4d |
|- ( ( ph /\ A R x ) -> A R A ) |
12 |
8 11
|
exlimddv |
|- ( ph -> A R A ) |