| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ersymb.1 |
|- ( ph -> R Er X ) |
| 2 |
|
erref.2 |
|- ( ph -> A e. X ) |
| 3 |
|
erdm |
|- ( R Er X -> dom R = X ) |
| 4 |
1 3
|
syl |
|- ( ph -> dom R = X ) |
| 5 |
2 4
|
eleqtrrd |
|- ( ph -> A e. dom R ) |
| 6 |
|
eldmg |
|- ( A e. X -> ( A e. dom R <-> E. x A R x ) ) |
| 7 |
2 6
|
syl |
|- ( ph -> ( A e. dom R <-> E. x A R x ) ) |
| 8 |
5 7
|
mpbid |
|- ( ph -> E. x A R x ) |
| 9 |
1
|
adantr |
|- ( ( ph /\ A R x ) -> R Er X ) |
| 10 |
|
simpr |
|- ( ( ph /\ A R x ) -> A R x ) |
| 11 |
9 10 10
|
ertr4d |
|- ( ( ph /\ A R x ) -> A R A ) |
| 12 |
8 11
|
exlimddv |
|- ( ph -> A R A ) |