Metamath Proof Explorer


Theorem errn

Description: The range and domain of an equivalence relation are equal. (Contributed by Rodolfo Medina, 11-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Assertion errn
|- ( R Er A -> ran R = A )

Proof

Step Hyp Ref Expression
1 df-rn
 |-  ran R = dom `' R
2 ercnv
 |-  ( R Er A -> `' R = R )
3 2 dmeqd
 |-  ( R Er A -> dom `' R = dom R )
4 erdm
 |-  ( R Er A -> dom R = A )
5 3 4 eqtrd
 |-  ( R Er A -> dom `' R = A )
6 1 5 eqtrid
 |-  ( R Er A -> ran R = A )