Description: An equivalence relation is a subset of the cartesian product of the field. (Contributed by Mario Carneiro, 12-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | erssxp | |- ( R Er A -> R C_ ( A X. A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | errel | |- ( R Er A -> Rel R ) |
|
2 | relssdmrn | |- ( Rel R -> R C_ ( dom R X. ran R ) ) |
|
3 | 1 2 | syl | |- ( R Er A -> R C_ ( dom R X. ran R ) ) |
4 | erdm | |- ( R Er A -> dom R = A ) |
|
5 | errn | |- ( R Er A -> ran R = A ) |
|
6 | 4 5 | xpeq12d | |- ( R Er A -> ( dom R X. ran R ) = ( A X. A ) ) |
7 | 3 6 | sseqtrd | |- ( R Er A -> R C_ ( A X. A ) ) |