Metamath Proof Explorer


Theorem erssxp

Description: An equivalence relation is a subset of the cartesian product of the field. (Contributed by Mario Carneiro, 12-Aug-2015)

Ref Expression
Assertion erssxp
|- ( R Er A -> R C_ ( A X. A ) )

Proof

Step Hyp Ref Expression
1 errel
 |-  ( R Er A -> Rel R )
2 relssdmrn
 |-  ( Rel R -> R C_ ( dom R X. ran R ) )
3 1 2 syl
 |-  ( R Er A -> R C_ ( dom R X. ran R ) )
4 erdm
 |-  ( R Er A -> dom R = A )
5 errn
 |-  ( R Er A -> ran R = A )
6 4 5 xpeq12d
 |-  ( R Er A -> ( dom R X. ran R ) = ( A X. A ) )
7 3 6 sseqtrd
 |-  ( R Er A -> R C_ ( A X. A ) )