| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ersym.1 |
|- ( ph -> R Er X ) |
| 2 |
|
ersym.2 |
|- ( ph -> A R B ) |
| 3 |
|
errel |
|- ( R Er X -> Rel R ) |
| 4 |
1 3
|
syl |
|- ( ph -> Rel R ) |
| 5 |
|
brrelex12 |
|- ( ( Rel R /\ A R B ) -> ( A e. _V /\ B e. _V ) ) |
| 6 |
4 2 5
|
syl2anc |
|- ( ph -> ( A e. _V /\ B e. _V ) ) |
| 7 |
|
brcnvg |
|- ( ( B e. _V /\ A e. _V ) -> ( B `' R A <-> A R B ) ) |
| 8 |
7
|
ancoms |
|- ( ( A e. _V /\ B e. _V ) -> ( B `' R A <-> A R B ) ) |
| 9 |
6 8
|
syl |
|- ( ph -> ( B `' R A <-> A R B ) ) |
| 10 |
2 9
|
mpbird |
|- ( ph -> B `' R A ) |
| 11 |
|
df-er |
|- ( R Er X <-> ( Rel R /\ dom R = X /\ ( `' R u. ( R o. R ) ) C_ R ) ) |
| 12 |
11
|
simp3bi |
|- ( R Er X -> ( `' R u. ( R o. R ) ) C_ R ) |
| 13 |
1 12
|
syl |
|- ( ph -> ( `' R u. ( R o. R ) ) C_ R ) |
| 14 |
13
|
unssad |
|- ( ph -> `' R C_ R ) |
| 15 |
14
|
ssbrd |
|- ( ph -> ( B `' R A -> B R A ) ) |
| 16 |
10 15
|
mpd |
|- ( ph -> B R A ) |