Step |
Hyp |
Ref |
Expression |
1 |
|
erth.1 |
|- ( ph -> R Er X ) |
2 |
|
erth.2 |
|- ( ph -> A e. X ) |
3 |
1
|
ersymb |
|- ( ph -> ( A R B <-> B R A ) ) |
4 |
3
|
biimpa |
|- ( ( ph /\ A R B ) -> B R A ) |
5 |
1
|
ertr |
|- ( ph -> ( ( B R A /\ A R x ) -> B R x ) ) |
6 |
5
|
impl |
|- ( ( ( ph /\ B R A ) /\ A R x ) -> B R x ) |
7 |
4 6
|
syldanl |
|- ( ( ( ph /\ A R B ) /\ A R x ) -> B R x ) |
8 |
1
|
ertr |
|- ( ph -> ( ( A R B /\ B R x ) -> A R x ) ) |
9 |
8
|
impl |
|- ( ( ( ph /\ A R B ) /\ B R x ) -> A R x ) |
10 |
7 9
|
impbida |
|- ( ( ph /\ A R B ) -> ( A R x <-> B R x ) ) |
11 |
|
vex |
|- x e. _V |
12 |
2
|
adantr |
|- ( ( ph /\ A R B ) -> A e. X ) |
13 |
|
elecg |
|- ( ( x e. _V /\ A e. X ) -> ( x e. [ A ] R <-> A R x ) ) |
14 |
11 12 13
|
sylancr |
|- ( ( ph /\ A R B ) -> ( x e. [ A ] R <-> A R x ) ) |
15 |
|
errel |
|- ( R Er X -> Rel R ) |
16 |
1 15
|
syl |
|- ( ph -> Rel R ) |
17 |
|
brrelex2 |
|- ( ( Rel R /\ A R B ) -> B e. _V ) |
18 |
16 17
|
sylan |
|- ( ( ph /\ A R B ) -> B e. _V ) |
19 |
|
elecg |
|- ( ( x e. _V /\ B e. _V ) -> ( x e. [ B ] R <-> B R x ) ) |
20 |
11 18 19
|
sylancr |
|- ( ( ph /\ A R B ) -> ( x e. [ B ] R <-> B R x ) ) |
21 |
10 14 20
|
3bitr4d |
|- ( ( ph /\ A R B ) -> ( x e. [ A ] R <-> x e. [ B ] R ) ) |
22 |
21
|
eqrdv |
|- ( ( ph /\ A R B ) -> [ A ] R = [ B ] R ) |
23 |
1
|
adantr |
|- ( ( ph /\ [ A ] R = [ B ] R ) -> R Er X ) |
24 |
1 2
|
erref |
|- ( ph -> A R A ) |
25 |
24
|
adantr |
|- ( ( ph /\ [ A ] R = [ B ] R ) -> A R A ) |
26 |
2
|
adantr |
|- ( ( ph /\ [ A ] R = [ B ] R ) -> A e. X ) |
27 |
|
elecg |
|- ( ( A e. X /\ A e. X ) -> ( A e. [ A ] R <-> A R A ) ) |
28 |
26 26 27
|
syl2anc |
|- ( ( ph /\ [ A ] R = [ B ] R ) -> ( A e. [ A ] R <-> A R A ) ) |
29 |
25 28
|
mpbird |
|- ( ( ph /\ [ A ] R = [ B ] R ) -> A e. [ A ] R ) |
30 |
|
simpr |
|- ( ( ph /\ [ A ] R = [ B ] R ) -> [ A ] R = [ B ] R ) |
31 |
29 30
|
eleqtrd |
|- ( ( ph /\ [ A ] R = [ B ] R ) -> A e. [ B ] R ) |
32 |
23 30
|
ereldm |
|- ( ( ph /\ [ A ] R = [ B ] R ) -> ( A e. X <-> B e. X ) ) |
33 |
26 32
|
mpbid |
|- ( ( ph /\ [ A ] R = [ B ] R ) -> B e. X ) |
34 |
|
elecg |
|- ( ( A e. X /\ B e. X ) -> ( A e. [ B ] R <-> B R A ) ) |
35 |
26 33 34
|
syl2anc |
|- ( ( ph /\ [ A ] R = [ B ] R ) -> ( A e. [ B ] R <-> B R A ) ) |
36 |
31 35
|
mpbid |
|- ( ( ph /\ [ A ] R = [ B ] R ) -> B R A ) |
37 |
23 36
|
ersym |
|- ( ( ph /\ [ A ] R = [ B ] R ) -> A R B ) |
38 |
22 37
|
impbida |
|- ( ph -> ( A R B <-> [ A ] R = [ B ] R ) ) |