Description: Basic property of equivalence relations. Compare Theorem 73 of Suppes p. 82. Assumes membership of the second argument in the domain. (Contributed by NM, 30-Jul-1995) (Revised by Mario Carneiro, 6-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | erth2.1 | |- ( ph -> R Er X ) |
|
erth2.2 | |- ( ph -> B e. X ) |
||
Assertion | erth2 | |- ( ph -> ( A R B <-> [ A ] R = [ B ] R ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erth2.1 | |- ( ph -> R Er X ) |
|
2 | erth2.2 | |- ( ph -> B e. X ) |
|
3 | 1 | ersymb | |- ( ph -> ( A R B <-> B R A ) ) |
4 | 1 2 | erth | |- ( ph -> ( B R A <-> [ B ] R = [ A ] R ) ) |
5 | eqcom | |- ( [ B ] R = [ A ] R <-> [ A ] R = [ B ] R ) |
|
6 | 4 5 | bitrdi | |- ( ph -> ( B R A <-> [ A ] R = [ B ] R ) ) |
7 | 3 6 | bitrd | |- ( ph -> ( A R B <-> [ A ] R = [ B ] R ) ) |