Description: Basic property of equivalence relations. Part of Lemma 3N of Enderton p. 57. (Contributed by NM, 30-Jul-1995) (Revised by Mario Carneiro, 9-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | erthi.1 | |- ( ph -> R Er X ) |
|
erthi.2 | |- ( ph -> A R B ) |
||
Assertion | erthi | |- ( ph -> [ A ] R = [ B ] R ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erthi.1 | |- ( ph -> R Er X ) |
|
2 | erthi.2 | |- ( ph -> A R B ) |
|
3 | 1 2 | ercl | |- ( ph -> A e. X ) |
4 | 1 3 | erth | |- ( ph -> ( A R B <-> [ A ] R = [ B ] R ) ) |
5 | 2 4 | mpbid | |- ( ph -> [ A ] R = [ B ] R ) |