Metamath Proof Explorer
		
		
		
		Description:  A transitivity relation for equivalences.  (Contributed by Mario
         Carneiro, 9-Jul-2014)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | ersymb.1 | |- ( ph -> R Er X ) | 
					
						|  |  | ertrd.5 | |- ( ph -> A R B ) | 
					
						|  |  | ertrd.6 | |- ( ph -> B R C ) | 
				
					|  | Assertion | ertr2d | |- ( ph -> C R A ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ersymb.1 |  |-  ( ph -> R Er X ) | 
						
							| 2 |  | ertrd.5 |  |-  ( ph -> A R B ) | 
						
							| 3 |  | ertrd.6 |  |-  ( ph -> B R C ) | 
						
							| 4 | 1 2 3 | ertrd |  |-  ( ph -> A R C ) | 
						
							| 5 | 1 4 | ersym |  |-  ( ph -> C R A ) |