Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ersymb.1 | |- ( ph -> R Er X ) |
|
ertrd.5 | |- ( ph -> A R B ) |
||
ertrd.6 | |- ( ph -> B R C ) |
||
Assertion | ertrd | |- ( ph -> A R C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ersymb.1 | |- ( ph -> R Er X ) |
|
2 | ertrd.5 | |- ( ph -> A R B ) |
|
3 | ertrd.6 | |- ( ph -> B R C ) |
|
4 | 1 | ertr | |- ( ph -> ( ( A R B /\ B R C ) -> A R C ) ) |
5 | 2 3 4 | mp2and | |- ( ph -> A R C ) |