Metamath Proof Explorer


Theorem ertrd

Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014)

Ref Expression
Hypotheses ersymb.1
|- ( ph -> R Er X )
ertrd.5
|- ( ph -> A R B )
ertrd.6
|- ( ph -> B R C )
Assertion ertrd
|- ( ph -> A R C )

Proof

Step Hyp Ref Expression
1 ersymb.1
 |-  ( ph -> R Er X )
2 ertrd.5
 |-  ( ph -> A R B )
3 ertrd.6
 |-  ( ph -> B R C )
4 1 ertr
 |-  ( ph -> ( ( A R B /\ B R C ) -> A R C ) )
5 2 3 4 mp2and
 |-  ( ph -> A R C )