| Step |
Hyp |
Ref |
Expression |
| 1 |
|
estrcbas.c |
|- C = ( ExtStrCat ` U ) |
| 2 |
|
estrcbas.u |
|- ( ph -> U e. V ) |
| 3 |
|
estrcco.o |
|- .x. = ( comp ` C ) |
| 4 |
|
estrcco.x |
|- ( ph -> X e. U ) |
| 5 |
|
estrcco.y |
|- ( ph -> Y e. U ) |
| 6 |
|
estrcco.z |
|- ( ph -> Z e. U ) |
| 7 |
|
estrcco.a |
|- A = ( Base ` X ) |
| 8 |
|
estrcco.b |
|- B = ( Base ` Y ) |
| 9 |
|
estrcco.d |
|- D = ( Base ` Z ) |
| 10 |
|
estrcco.f |
|- ( ph -> F : A --> B ) |
| 11 |
|
estrcco.g |
|- ( ph -> G : B --> D ) |
| 12 |
1 2 3
|
estrccofval |
|- ( ph -> .x. = ( v e. ( U X. U ) , z e. U |-> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) ) ) |
| 13 |
|
fveq2 |
|- ( z = Z -> ( Base ` z ) = ( Base ` Z ) ) |
| 14 |
13
|
adantl |
|- ( ( v = <. X , Y >. /\ z = Z ) -> ( Base ` z ) = ( Base ` Z ) ) |
| 15 |
14
|
adantl |
|- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( Base ` z ) = ( Base ` Z ) ) |
| 16 |
|
simprl |
|- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> v = <. X , Y >. ) |
| 17 |
16
|
fveq2d |
|- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( 2nd ` v ) = ( 2nd ` <. X , Y >. ) ) |
| 18 |
|
op2ndg |
|- ( ( X e. U /\ Y e. U ) -> ( 2nd ` <. X , Y >. ) = Y ) |
| 19 |
4 5 18
|
syl2anc |
|- ( ph -> ( 2nd ` <. X , Y >. ) = Y ) |
| 20 |
19
|
adantr |
|- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( 2nd ` <. X , Y >. ) = Y ) |
| 21 |
17 20
|
eqtrd |
|- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( 2nd ` v ) = Y ) |
| 22 |
21
|
fveq2d |
|- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( Base ` ( 2nd ` v ) ) = ( Base ` Y ) ) |
| 23 |
15 22
|
oveq12d |
|- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) = ( ( Base ` Z ) ^m ( Base ` Y ) ) ) |
| 24 |
16
|
fveq2d |
|- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( 1st ` v ) = ( 1st ` <. X , Y >. ) ) |
| 25 |
24
|
fveq2d |
|- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( Base ` ( 1st ` v ) ) = ( Base ` ( 1st ` <. X , Y >. ) ) ) |
| 26 |
|
op1stg |
|- ( ( X e. U /\ Y e. U ) -> ( 1st ` <. X , Y >. ) = X ) |
| 27 |
4 5 26
|
syl2anc |
|- ( ph -> ( 1st ` <. X , Y >. ) = X ) |
| 28 |
27
|
fveq2d |
|- ( ph -> ( Base ` ( 1st ` <. X , Y >. ) ) = ( Base ` X ) ) |
| 29 |
28
|
adantr |
|- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( Base ` ( 1st ` <. X , Y >. ) ) = ( Base ` X ) ) |
| 30 |
25 29
|
eqtrd |
|- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( Base ` ( 1st ` v ) ) = ( Base ` X ) ) |
| 31 |
22 30
|
oveq12d |
|- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) = ( ( Base ` Y ) ^m ( Base ` X ) ) ) |
| 32 |
|
eqidd |
|- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( g o. f ) = ( g o. f ) ) |
| 33 |
23 31 32
|
mpoeq123dv |
|- ( ( ph /\ ( v = <. X , Y >. /\ z = Z ) ) -> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) = ( g e. ( ( Base ` Z ) ^m ( Base ` Y ) ) , f e. ( ( Base ` Y ) ^m ( Base ` X ) ) |-> ( g o. f ) ) ) |
| 34 |
4 5
|
opelxpd |
|- ( ph -> <. X , Y >. e. ( U X. U ) ) |
| 35 |
|
ovex |
|- ( ( Base ` Z ) ^m ( Base ` Y ) ) e. _V |
| 36 |
|
ovex |
|- ( ( Base ` Y ) ^m ( Base ` X ) ) e. _V |
| 37 |
35 36
|
mpoex |
|- ( g e. ( ( Base ` Z ) ^m ( Base ` Y ) ) , f e. ( ( Base ` Y ) ^m ( Base ` X ) ) |-> ( g o. f ) ) e. _V |
| 38 |
37
|
a1i |
|- ( ph -> ( g e. ( ( Base ` Z ) ^m ( Base ` Y ) ) , f e. ( ( Base ` Y ) ^m ( Base ` X ) ) |-> ( g o. f ) ) e. _V ) |
| 39 |
12 33 34 6 38
|
ovmpod |
|- ( ph -> ( <. X , Y >. .x. Z ) = ( g e. ( ( Base ` Z ) ^m ( Base ` Y ) ) , f e. ( ( Base ` Y ) ^m ( Base ` X ) ) |-> ( g o. f ) ) ) |
| 40 |
|
simpl |
|- ( ( g = G /\ f = F ) -> g = G ) |
| 41 |
|
simpr |
|- ( ( g = G /\ f = F ) -> f = F ) |
| 42 |
40 41
|
coeq12d |
|- ( ( g = G /\ f = F ) -> ( g o. f ) = ( G o. F ) ) |
| 43 |
42
|
adantl |
|- ( ( ph /\ ( g = G /\ f = F ) ) -> ( g o. f ) = ( G o. F ) ) |
| 44 |
8
|
a1i |
|- ( ph -> B = ( Base ` Y ) ) |
| 45 |
44
|
eqcomd |
|- ( ph -> ( Base ` Y ) = B ) |
| 46 |
9
|
a1i |
|- ( ph -> D = ( Base ` Z ) ) |
| 47 |
46
|
eqcomd |
|- ( ph -> ( Base ` Z ) = D ) |
| 48 |
45 47
|
feq23d |
|- ( ph -> ( G : ( Base ` Y ) --> ( Base ` Z ) <-> G : B --> D ) ) |
| 49 |
11 48
|
mpbird |
|- ( ph -> G : ( Base ` Y ) --> ( Base ` Z ) ) |
| 50 |
|
fvexd |
|- ( ph -> ( Base ` Z ) e. _V ) |
| 51 |
|
fvexd |
|- ( ph -> ( Base ` Y ) e. _V ) |
| 52 |
50 51
|
elmapd |
|- ( ph -> ( G e. ( ( Base ` Z ) ^m ( Base ` Y ) ) <-> G : ( Base ` Y ) --> ( Base ` Z ) ) ) |
| 53 |
49 52
|
mpbird |
|- ( ph -> G e. ( ( Base ` Z ) ^m ( Base ` Y ) ) ) |
| 54 |
7
|
a1i |
|- ( ph -> A = ( Base ` X ) ) |
| 55 |
54
|
eqcomd |
|- ( ph -> ( Base ` X ) = A ) |
| 56 |
55 45
|
feq23d |
|- ( ph -> ( F : ( Base ` X ) --> ( Base ` Y ) <-> F : A --> B ) ) |
| 57 |
10 56
|
mpbird |
|- ( ph -> F : ( Base ` X ) --> ( Base ` Y ) ) |
| 58 |
|
fvexd |
|- ( ph -> ( Base ` X ) e. _V ) |
| 59 |
51 58
|
elmapd |
|- ( ph -> ( F e. ( ( Base ` Y ) ^m ( Base ` X ) ) <-> F : ( Base ` X ) --> ( Base ` Y ) ) ) |
| 60 |
57 59
|
mpbird |
|- ( ph -> F e. ( ( Base ` Y ) ^m ( Base ` X ) ) ) |
| 61 |
|
coexg |
|- ( ( G e. ( ( Base ` Z ) ^m ( Base ` Y ) ) /\ F e. ( ( Base ` Y ) ^m ( Base ` X ) ) ) -> ( G o. F ) e. _V ) |
| 62 |
53 60 61
|
syl2anc |
|- ( ph -> ( G o. F ) e. _V ) |
| 63 |
39 43 53 60 62
|
ovmpod |
|- ( ph -> ( G ( <. X , Y >. .x. Z ) F ) = ( G o. F ) ) |