| Step | Hyp | Ref | Expression | 
						
							| 1 |  | estrcbas.c |  |-  C = ( ExtStrCat ` U ) | 
						
							| 2 |  | estrcbas.u |  |-  ( ph -> U e. V ) | 
						
							| 3 |  | estrchomfval.h |  |-  H = ( Hom ` C ) | 
						
							| 4 |  | eqidd |  |-  ( ph -> ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) = ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) ) | 
						
							| 5 |  | eqidd |  |-  ( ph -> ( v e. ( U X. U ) , z e. U |-> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) ) = ( v e. ( U X. U ) , z e. U |-> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) ) ) | 
						
							| 6 | 1 2 4 5 | estrcval |  |-  ( ph -> C = { <. ( Base ` ndx ) , U >. , <. ( Hom ` ndx ) , ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) >. , <. ( comp ` ndx ) , ( v e. ( U X. U ) , z e. U |-> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) ) >. } ) | 
						
							| 7 |  | catstr |  |-  { <. ( Base ` ndx ) , U >. , <. ( Hom ` ndx ) , ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) >. , <. ( comp ` ndx ) , ( v e. ( U X. U ) , z e. U |-> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) ) >. } Struct <. 1 , ; 1 5 >. | 
						
							| 8 |  | homid |  |-  Hom = Slot ( Hom ` ndx ) | 
						
							| 9 |  | snsstp2 |  |-  { <. ( Hom ` ndx ) , ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) >. } C_ { <. ( Base ` ndx ) , U >. , <. ( Hom ` ndx ) , ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) >. , <. ( comp ` ndx ) , ( v e. ( U X. U ) , z e. U |-> ( g e. ( ( Base ` z ) ^m ( Base ` ( 2nd ` v ) ) ) , f e. ( ( Base ` ( 2nd ` v ) ) ^m ( Base ` ( 1st ` v ) ) ) |-> ( g o. f ) ) ) >. } | 
						
							| 10 |  | mpoexga |  |-  ( ( U e. V /\ U e. V ) -> ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) e. _V ) | 
						
							| 11 | 2 2 10 | syl2anc |  |-  ( ph -> ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) e. _V ) | 
						
							| 12 | 6 7 8 9 11 3 | strfv3 |  |-  ( ph -> H = ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) ) |