| Step | Hyp | Ref | Expression | 
						
							| 1 |  | estrccat.c |  |-  C = ( ExtStrCat ` U ) | 
						
							| 2 |  | estrcid.o |  |-  .1. = ( Id ` C ) | 
						
							| 3 |  | estrcid.u |  |-  ( ph -> U e. V ) | 
						
							| 4 |  | estrcid.x |  |-  ( ph -> X e. U ) | 
						
							| 5 | 1 | estrccatid |  |-  ( U e. V -> ( C e. Cat /\ ( Id ` C ) = ( x e. U |-> ( _I |` ( Base ` x ) ) ) ) ) | 
						
							| 6 | 3 5 | syl |  |-  ( ph -> ( C e. Cat /\ ( Id ` C ) = ( x e. U |-> ( _I |` ( Base ` x ) ) ) ) ) | 
						
							| 7 | 6 | simprd |  |-  ( ph -> ( Id ` C ) = ( x e. U |-> ( _I |` ( Base ` x ) ) ) ) | 
						
							| 8 | 2 7 | eqtrid |  |-  ( ph -> .1. = ( x e. U |-> ( _I |` ( Base ` x ) ) ) ) | 
						
							| 9 |  | fveq2 |  |-  ( x = X -> ( Base ` x ) = ( Base ` X ) ) | 
						
							| 10 | 9 | reseq2d |  |-  ( x = X -> ( _I |` ( Base ` x ) ) = ( _I |` ( Base ` X ) ) ) | 
						
							| 11 | 10 | adantl |  |-  ( ( ph /\ x = X ) -> ( _I |` ( Base ` x ) ) = ( _I |` ( Base ` X ) ) ) | 
						
							| 12 |  | fvexd |  |-  ( ph -> ( Base ` X ) e. _V ) | 
						
							| 13 | 12 | resiexd |  |-  ( ph -> ( _I |` ( Base ` X ) ) e. _V ) | 
						
							| 14 | 8 11 4 13 | fvmptd |  |-  ( ph -> ( .1. ` X ) = ( _I |` ( Base ` X ) ) ) |