| Step |
Hyp |
Ref |
Expression |
| 1 |
|
estrres.c |
|- ( ph -> C = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |
| 2 |
|
estrres.b |
|- ( ph -> B e. V ) |
| 3 |
|
estrres.h |
|- ( ph -> H e. X ) |
| 4 |
|
estrres.x |
|- ( ph -> .x. e. Y ) |
| 5 |
|
estrres.g |
|- ( ph -> G e. W ) |
| 6 |
|
estrres.u |
|- ( ph -> A C_ B ) |
| 7 |
|
ovex |
|- ( C |`s A ) e. _V |
| 8 |
|
setsval |
|- ( ( ( C |`s A ) e. _V /\ G e. W ) -> ( ( C |`s A ) sSet <. ( Hom ` ndx ) , G >. ) = ( ( ( C |`s A ) |` ( _V \ { ( Hom ` ndx ) } ) ) u. { <. ( Hom ` ndx ) , G >. } ) ) |
| 9 |
7 5 8
|
sylancr |
|- ( ph -> ( ( C |`s A ) sSet <. ( Hom ` ndx ) , G >. ) = ( ( ( C |`s A ) |` ( _V \ { ( Hom ` ndx ) } ) ) u. { <. ( Hom ` ndx ) , G >. } ) ) |
| 10 |
|
eqid |
|- ( C |`s A ) = ( C |`s A ) |
| 11 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 12 |
|
eqid |
|- ( Base ` ndx ) = ( Base ` ndx ) |
| 13 |
|
tpex |
|- { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } e. _V |
| 14 |
1 13
|
eqeltrdi |
|- ( ph -> C e. _V ) |
| 15 |
|
fvex |
|- ( Base ` ndx ) e. _V |
| 16 |
|
fvex |
|- ( Hom ` ndx ) e. _V |
| 17 |
|
fvex |
|- ( comp ` ndx ) e. _V |
| 18 |
15 16 17
|
3pm3.2i |
|- ( ( Base ` ndx ) e. _V /\ ( Hom ` ndx ) e. _V /\ ( comp ` ndx ) e. _V ) |
| 19 |
18
|
a1i |
|- ( ph -> ( ( Base ` ndx ) e. _V /\ ( Hom ` ndx ) e. _V /\ ( comp ` ndx ) e. _V ) ) |
| 20 |
|
slotsbhcdif |
|- ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) |
| 21 |
20
|
a1i |
|- ( ph -> ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) ) |
| 22 |
|
funtpg |
|- ( ( ( ( Base ` ndx ) e. _V /\ ( Hom ` ndx ) e. _V /\ ( comp ` ndx ) e. _V ) /\ ( B e. V /\ H e. X /\ .x. e. Y ) /\ ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) ) -> Fun { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |
| 23 |
19 2 3 4 21 22
|
syl131anc |
|- ( ph -> Fun { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |
| 24 |
1
|
funeqd |
|- ( ph -> ( Fun C <-> Fun { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) ) |
| 25 |
23 24
|
mpbird |
|- ( ph -> Fun C ) |
| 26 |
1 2 3 4
|
estrreslem2 |
|- ( ph -> ( Base ` ndx ) e. dom C ) |
| 27 |
1 2
|
estrreslem1 |
|- ( ph -> B = ( Base ` C ) ) |
| 28 |
6 27
|
sseqtrd |
|- ( ph -> A C_ ( Base ` C ) ) |
| 29 |
10 11 12 14 25 26 28
|
ressval3d |
|- ( ph -> ( C |`s A ) = ( C sSet <. ( Base ` ndx ) , A >. ) ) |
| 30 |
29
|
reseq1d |
|- ( ph -> ( ( C |`s A ) |` ( _V \ { ( Hom ` ndx ) } ) ) = ( ( C sSet <. ( Base ` ndx ) , A >. ) |` ( _V \ { ( Hom ` ndx ) } ) ) ) |
| 31 |
30
|
uneq1d |
|- ( ph -> ( ( ( C |`s A ) |` ( _V \ { ( Hom ` ndx ) } ) ) u. { <. ( Hom ` ndx ) , G >. } ) = ( ( ( C sSet <. ( Base ` ndx ) , A >. ) |` ( _V \ { ( Hom ` ndx ) } ) ) u. { <. ( Hom ` ndx ) , G >. } ) ) |
| 32 |
2 6
|
ssexd |
|- ( ph -> A e. _V ) |
| 33 |
|
setsval |
|- ( ( C e. _V /\ A e. _V ) -> ( C sSet <. ( Base ` ndx ) , A >. ) = ( ( C |` ( _V \ { ( Base ` ndx ) } ) ) u. { <. ( Base ` ndx ) , A >. } ) ) |
| 34 |
14 32 33
|
syl2anc |
|- ( ph -> ( C sSet <. ( Base ` ndx ) , A >. ) = ( ( C |` ( _V \ { ( Base ` ndx ) } ) ) u. { <. ( Base ` ndx ) , A >. } ) ) |
| 35 |
34
|
reseq1d |
|- ( ph -> ( ( C sSet <. ( Base ` ndx ) , A >. ) |` ( _V \ { ( Hom ` ndx ) } ) ) = ( ( ( C |` ( _V \ { ( Base ` ndx ) } ) ) u. { <. ( Base ` ndx ) , A >. } ) |` ( _V \ { ( Hom ` ndx ) } ) ) ) |
| 36 |
|
fvexd |
|- ( ph -> ( Hom ` ndx ) e. _V ) |
| 37 |
|
fvexd |
|- ( ph -> ( comp ` ndx ) e. _V ) |
| 38 |
3
|
elexd |
|- ( ph -> H e. _V ) |
| 39 |
4
|
elexd |
|- ( ph -> .x. e. _V ) |
| 40 |
|
simp1 |
|- ( ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) -> ( Base ` ndx ) =/= ( Hom ` ndx ) ) |
| 41 |
40
|
necomd |
|- ( ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) -> ( Hom ` ndx ) =/= ( Base ` ndx ) ) |
| 42 |
20 41
|
mp1i |
|- ( ph -> ( Hom ` ndx ) =/= ( Base ` ndx ) ) |
| 43 |
|
simp2 |
|- ( ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) -> ( Base ` ndx ) =/= ( comp ` ndx ) ) |
| 44 |
43
|
necomd |
|- ( ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) -> ( comp ` ndx ) =/= ( Base ` ndx ) ) |
| 45 |
20 44
|
mp1i |
|- ( ph -> ( comp ` ndx ) =/= ( Base ` ndx ) ) |
| 46 |
1 36 37 38 39 42 45
|
tpres |
|- ( ph -> ( C |` ( _V \ { ( Base ` ndx ) } ) ) = { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |
| 47 |
46
|
uneq1d |
|- ( ph -> ( ( C |` ( _V \ { ( Base ` ndx ) } ) ) u. { <. ( Base ` ndx ) , A >. } ) = ( { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } u. { <. ( Base ` ndx ) , A >. } ) ) |
| 48 |
|
df-tp |
|- { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. , <. ( Base ` ndx ) , A >. } = ( { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } u. { <. ( Base ` ndx ) , A >. } ) |
| 49 |
47 48
|
eqtr4di |
|- ( ph -> ( ( C |` ( _V \ { ( Base ` ndx ) } ) ) u. { <. ( Base ` ndx ) , A >. } ) = { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. , <. ( Base ` ndx ) , A >. } ) |
| 50 |
|
fvexd |
|- ( ph -> ( Base ` ndx ) e. _V ) |
| 51 |
|
simp3 |
|- ( ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) -> ( Hom ` ndx ) =/= ( comp ` ndx ) ) |
| 52 |
51
|
necomd |
|- ( ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) -> ( comp ` ndx ) =/= ( Hom ` ndx ) ) |
| 53 |
20 52
|
mp1i |
|- ( ph -> ( comp ` ndx ) =/= ( Hom ` ndx ) ) |
| 54 |
20 40
|
mp1i |
|- ( ph -> ( Base ` ndx ) =/= ( Hom ` ndx ) ) |
| 55 |
49 37 50 39 32 53 54
|
tpres |
|- ( ph -> ( ( ( C |` ( _V \ { ( Base ` ndx ) } ) ) u. { <. ( Base ` ndx ) , A >. } ) |` ( _V \ { ( Hom ` ndx ) } ) ) = { <. ( comp ` ndx ) , .x. >. , <. ( Base ` ndx ) , A >. } ) |
| 56 |
35 55
|
eqtrd |
|- ( ph -> ( ( C sSet <. ( Base ` ndx ) , A >. ) |` ( _V \ { ( Hom ` ndx ) } ) ) = { <. ( comp ` ndx ) , .x. >. , <. ( Base ` ndx ) , A >. } ) |
| 57 |
56
|
uneq1d |
|- ( ph -> ( ( ( C sSet <. ( Base ` ndx ) , A >. ) |` ( _V \ { ( Hom ` ndx ) } ) ) u. { <. ( Hom ` ndx ) , G >. } ) = ( { <. ( comp ` ndx ) , .x. >. , <. ( Base ` ndx ) , A >. } u. { <. ( Hom ` ndx ) , G >. } ) ) |
| 58 |
|
df-tp |
|- { <. ( comp ` ndx ) , .x. >. , <. ( Base ` ndx ) , A >. , <. ( Hom ` ndx ) , G >. } = ( { <. ( comp ` ndx ) , .x. >. , <. ( Base ` ndx ) , A >. } u. { <. ( Hom ` ndx ) , G >. } ) |
| 59 |
|
tprot |
|- { <. ( comp ` ndx ) , .x. >. , <. ( Base ` ndx ) , A >. , <. ( Hom ` ndx ) , G >. } = { <. ( Base ` ndx ) , A >. , <. ( Hom ` ndx ) , G >. , <. ( comp ` ndx ) , .x. >. } |
| 60 |
58 59
|
eqtr3i |
|- ( { <. ( comp ` ndx ) , .x. >. , <. ( Base ` ndx ) , A >. } u. { <. ( Hom ` ndx ) , G >. } ) = { <. ( Base ` ndx ) , A >. , <. ( Hom ` ndx ) , G >. , <. ( comp ` ndx ) , .x. >. } |
| 61 |
57 60
|
eqtrdi |
|- ( ph -> ( ( ( C sSet <. ( Base ` ndx ) , A >. ) |` ( _V \ { ( Hom ` ndx ) } ) ) u. { <. ( Hom ` ndx ) , G >. } ) = { <. ( Base ` ndx ) , A >. , <. ( Hom ` ndx ) , G >. , <. ( comp ` ndx ) , .x. >. } ) |
| 62 |
9 31 61
|
3eqtrd |
|- ( ph -> ( ( C |`s A ) sSet <. ( Hom ` ndx ) , G >. ) = { <. ( Base ` ndx ) , A >. , <. ( Hom ` ndx ) , G >. , <. ( comp ` ndx ) , .x. >. } ) |