| Step |
Hyp |
Ref |
Expression |
| 1 |
|
estrres.c |
|- ( ph -> C = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |
| 2 |
|
estrres.b |
|- ( ph -> B e. V ) |
| 3 |
1
|
fveq2d |
|- ( ph -> ( Base ` C ) = ( Base ` { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) ) |
| 4 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
| 5 |
|
tpex |
|- { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } e. _V |
| 6 |
5
|
a1i |
|- ( ph -> { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } e. _V ) |
| 7 |
4 6
|
strfvnd |
|- ( ph -> ( Base ` { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) = ( { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ` ( Base ` ndx ) ) ) |
| 8 |
|
fvexd |
|- ( ph -> ( Base ` ndx ) e. _V ) |
| 9 |
|
slotsbhcdif |
|- ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) |
| 10 |
|
3simpa |
|- ( ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) -> ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) ) ) |
| 11 |
9 10
|
mp1i |
|- ( ph -> ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) ) ) |
| 12 |
|
fvtp1g |
|- ( ( ( ( Base ` ndx ) e. _V /\ B e. V ) /\ ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) ) ) -> ( { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ` ( Base ` ndx ) ) = B ) |
| 13 |
8 2 11 12
|
syl21anc |
|- ( ph -> ( { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ` ( Base ` ndx ) ) = B ) |
| 14 |
3 7 13
|
3eqtrrd |
|- ( ph -> B = ( Base ` C ) ) |