| Step |
Hyp |
Ref |
Expression |
| 1 |
|
estrres.c |
|- ( ph -> C = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |
| 2 |
|
estrres.b |
|- ( ph -> B e. V ) |
| 3 |
|
estrres.h |
|- ( ph -> H e. X ) |
| 4 |
|
estrres.x |
|- ( ph -> .x. e. Y ) |
| 5 |
|
eqidd |
|- ( ph -> ( Base ` ndx ) = ( Base ` ndx ) ) |
| 6 |
5
|
3mix1d |
|- ( ph -> ( ( Base ` ndx ) = ( Base ` ndx ) \/ ( Base ` ndx ) = ( Hom ` ndx ) \/ ( Base ` ndx ) = ( comp ` ndx ) ) ) |
| 7 |
|
fvex |
|- ( Base ` ndx ) e. _V |
| 8 |
|
eltpg |
|- ( ( Base ` ndx ) e. _V -> ( ( Base ` ndx ) e. { ( Base ` ndx ) , ( Hom ` ndx ) , ( comp ` ndx ) } <-> ( ( Base ` ndx ) = ( Base ` ndx ) \/ ( Base ` ndx ) = ( Hom ` ndx ) \/ ( Base ` ndx ) = ( comp ` ndx ) ) ) ) |
| 9 |
7 8
|
mp1i |
|- ( ph -> ( ( Base ` ndx ) e. { ( Base ` ndx ) , ( Hom ` ndx ) , ( comp ` ndx ) } <-> ( ( Base ` ndx ) = ( Base ` ndx ) \/ ( Base ` ndx ) = ( Hom ` ndx ) \/ ( Base ` ndx ) = ( comp ` ndx ) ) ) ) |
| 10 |
6 9
|
mpbird |
|- ( ph -> ( Base ` ndx ) e. { ( Base ` ndx ) , ( Hom ` ndx ) , ( comp ` ndx ) } ) |
| 11 |
|
df-tp |
|- { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } = ( { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. } u. { <. ( comp ` ndx ) , .x. >. } ) |
| 12 |
11
|
a1i |
|- ( ph -> { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } = ( { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. } u. { <. ( comp ` ndx ) , .x. >. } ) ) |
| 13 |
12
|
dmeqd |
|- ( ph -> dom { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } = dom ( { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. } u. { <. ( comp ` ndx ) , .x. >. } ) ) |
| 14 |
|
dmun |
|- dom ( { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. } u. { <. ( comp ` ndx ) , .x. >. } ) = ( dom { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. } u. dom { <. ( comp ` ndx ) , .x. >. } ) |
| 15 |
14
|
a1i |
|- ( ph -> dom ( { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. } u. { <. ( comp ` ndx ) , .x. >. } ) = ( dom { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. } u. dom { <. ( comp ` ndx ) , .x. >. } ) ) |
| 16 |
|
dmpropg |
|- ( ( B e. V /\ H e. X ) -> dom { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. } = { ( Base ` ndx ) , ( Hom ` ndx ) } ) |
| 17 |
2 3 16
|
syl2anc |
|- ( ph -> dom { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. } = { ( Base ` ndx ) , ( Hom ` ndx ) } ) |
| 18 |
|
dmsnopg |
|- ( .x. e. Y -> dom { <. ( comp ` ndx ) , .x. >. } = { ( comp ` ndx ) } ) |
| 19 |
4 18
|
syl |
|- ( ph -> dom { <. ( comp ` ndx ) , .x. >. } = { ( comp ` ndx ) } ) |
| 20 |
17 19
|
uneq12d |
|- ( ph -> ( dom { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. } u. dom { <. ( comp ` ndx ) , .x. >. } ) = ( { ( Base ` ndx ) , ( Hom ` ndx ) } u. { ( comp ` ndx ) } ) ) |
| 21 |
13 15 20
|
3eqtrd |
|- ( ph -> dom { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } = ( { ( Base ` ndx ) , ( Hom ` ndx ) } u. { ( comp ` ndx ) } ) ) |
| 22 |
1
|
dmeqd |
|- ( ph -> dom C = dom { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |
| 23 |
|
df-tp |
|- { ( Base ` ndx ) , ( Hom ` ndx ) , ( comp ` ndx ) } = ( { ( Base ` ndx ) , ( Hom ` ndx ) } u. { ( comp ` ndx ) } ) |
| 24 |
23
|
a1i |
|- ( ph -> { ( Base ` ndx ) , ( Hom ` ndx ) , ( comp ` ndx ) } = ( { ( Base ` ndx ) , ( Hom ` ndx ) } u. { ( comp ` ndx ) } ) ) |
| 25 |
21 22 24
|
3eqtr4d |
|- ( ph -> dom C = { ( Base ` ndx ) , ( Hom ` ndx ) , ( comp ` ndx ) } ) |
| 26 |
10 25
|
eleqtrrd |
|- ( ph -> ( Base ` ndx ) e. dom C ) |