Step |
Hyp |
Ref |
Expression |
1 |
|
df-e |
|- _e = ( exp ` 1 ) |
2 |
|
ax-1cn |
|- 1 e. CC |
3 |
|
efval |
|- ( 1 e. CC -> ( exp ` 1 ) = sum_ k e. NN0 ( ( 1 ^ k ) / ( ! ` k ) ) ) |
4 |
2 3
|
ax-mp |
|- ( exp ` 1 ) = sum_ k e. NN0 ( ( 1 ^ k ) / ( ! ` k ) ) |
5 |
|
nn0z |
|- ( k e. NN0 -> k e. ZZ ) |
6 |
|
1exp |
|- ( k e. ZZ -> ( 1 ^ k ) = 1 ) |
7 |
5 6
|
syl |
|- ( k e. NN0 -> ( 1 ^ k ) = 1 ) |
8 |
7
|
oveq1d |
|- ( k e. NN0 -> ( ( 1 ^ k ) / ( ! ` k ) ) = ( 1 / ( ! ` k ) ) ) |
9 |
8
|
sumeq2i |
|- sum_ k e. NN0 ( ( 1 ^ k ) / ( ! ` k ) ) = sum_ k e. NN0 ( 1 / ( ! ` k ) ) |
10 |
1 4 9
|
3eqtri |
|- _e = sum_ k e. NN0 ( 1 / ( ! ` k ) ) |