| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-e |  |-  _e = ( exp ` 1 ) | 
						
							| 2 |  | ax-1cn |  |-  1 e. CC | 
						
							| 3 |  | efval |  |-  ( 1 e. CC -> ( exp ` 1 ) = sum_ k e. NN0 ( ( 1 ^ k ) / ( ! ` k ) ) ) | 
						
							| 4 | 2 3 | ax-mp |  |-  ( exp ` 1 ) = sum_ k e. NN0 ( ( 1 ^ k ) / ( ! ` k ) ) | 
						
							| 5 |  | nn0z |  |-  ( k e. NN0 -> k e. ZZ ) | 
						
							| 6 |  | 1exp |  |-  ( k e. ZZ -> ( 1 ^ k ) = 1 ) | 
						
							| 7 | 5 6 | syl |  |-  ( k e. NN0 -> ( 1 ^ k ) = 1 ) | 
						
							| 8 | 7 | oveq1d |  |-  ( k e. NN0 -> ( ( 1 ^ k ) / ( ! ` k ) ) = ( 1 / ( ! ` k ) ) ) | 
						
							| 9 | 8 | sumeq2i |  |-  sum_ k e. NN0 ( ( 1 ^ k ) / ( ! ` k ) ) = sum_ k e. NN0 ( 1 / ( ! ` k ) ) | 
						
							| 10 | 1 4 9 | 3eqtri |  |-  _e = sum_ k e. NN0 ( 1 / ( ! ` k ) ) |