| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1red |  |-  ( ( k e. ZZ /\ k =/= 0 ) -> 1 e. RR ) | 
						
							| 2 |  | nn0abscl |  |-  ( k e. ZZ -> ( abs ` k ) e. NN0 ) | 
						
							| 3 | 2 | nn0red |  |-  ( k e. ZZ -> ( abs ` k ) e. RR ) | 
						
							| 4 | 3 | adantr |  |-  ( ( k e. ZZ /\ k =/= 0 ) -> ( abs ` k ) e. RR ) | 
						
							| 5 |  | nnabscl |  |-  ( ( k e. ZZ /\ k =/= 0 ) -> ( abs ` k ) e. NN ) | 
						
							| 6 | 5 | nnge1d |  |-  ( ( k e. ZZ /\ k =/= 0 ) -> 1 <_ ( abs ` k ) ) | 
						
							| 7 | 1 4 6 | lensymd |  |-  ( ( k e. ZZ /\ k =/= 0 ) -> -. ( abs ` k ) < 1 ) | 
						
							| 8 |  | nan |  |-  ( ( k e. ZZ -> -. ( k =/= 0 /\ ( abs ` k ) < 1 ) ) <-> ( ( k e. ZZ /\ k =/= 0 ) -> -. ( abs ` k ) < 1 ) ) | 
						
							| 9 | 7 8 | mpbir |  |-  ( k e. ZZ -> -. ( k =/= 0 /\ ( abs ` k ) < 1 ) ) | 
						
							| 10 | 9 | nrex |  |-  -. E. k e. ZZ ( k =/= 0 /\ ( abs ` k ) < 1 ) | 
						
							| 11 |  | ere |  |-  _e e. RR | 
						
							| 12 | 11 | recni |  |-  _e e. CC | 
						
							| 13 |  | neldif |  |-  ( ( _e e. CC /\ -. _e e. ( CC \ AA ) ) -> _e e. AA ) | 
						
							| 14 | 12 13 | mpan |  |-  ( -. _e e. ( CC \ AA ) -> _e e. AA ) | 
						
							| 15 |  | ene0 |  |-  _e =/= 0 | 
						
							| 16 |  | elsng |  |-  ( _e e. CC -> ( _e e. { 0 } <-> _e = 0 ) ) | 
						
							| 17 | 12 16 | ax-mp |  |-  ( _e e. { 0 } <-> _e = 0 ) | 
						
							| 18 | 15 17 | nemtbir |  |-  -. _e e. { 0 } | 
						
							| 19 | 18 | a1i |  |-  ( -. _e e. ( CC \ AA ) -> -. _e e. { 0 } ) | 
						
							| 20 | 14 19 | eldifd |  |-  ( -. _e e. ( CC \ AA ) -> _e e. ( AA \ { 0 } ) ) | 
						
							| 21 |  | elaa2 |  |-  ( _e e. ( AA \ { 0 } ) <-> ( _e e. CC /\ E. q e. ( Poly ` ZZ ) ( ( ( coeff ` q ) ` 0 ) =/= 0 /\ ( q ` _e ) = 0 ) ) ) | 
						
							| 22 | 20 21 | sylib |  |-  ( -. _e e. ( CC \ AA ) -> ( _e e. CC /\ E. q e. ( Poly ` ZZ ) ( ( ( coeff ` q ) ` 0 ) =/= 0 /\ ( q ` _e ) = 0 ) ) ) | 
						
							| 23 | 22 | simprd |  |-  ( -. _e e. ( CC \ AA ) -> E. q e. ( Poly ` ZZ ) ( ( ( coeff ` q ) ` 0 ) =/= 0 /\ ( q ` _e ) = 0 ) ) | 
						
							| 24 |  | simpl |  |-  ( ( q e. ( Poly ` ZZ ) /\ ( ( coeff ` q ) ` 0 ) =/= 0 ) -> q e. ( Poly ` ZZ ) ) | 
						
							| 25 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 26 |  | n0p |  |-  ( ( q e. ( Poly ` ZZ ) /\ 0 e. NN0 /\ ( ( coeff ` q ) ` 0 ) =/= 0 ) -> q =/= 0p ) | 
						
							| 27 | 25 26 | mp3an2 |  |-  ( ( q e. ( Poly ` ZZ ) /\ ( ( coeff ` q ) ` 0 ) =/= 0 ) -> q =/= 0p ) | 
						
							| 28 |  | nelsn |  |-  ( q =/= 0p -> -. q e. { 0p } ) | 
						
							| 29 | 27 28 | syl |  |-  ( ( q e. ( Poly ` ZZ ) /\ ( ( coeff ` q ) ` 0 ) =/= 0 ) -> -. q e. { 0p } ) | 
						
							| 30 | 24 29 | eldifd |  |-  ( ( q e. ( Poly ` ZZ ) /\ ( ( coeff ` q ) ` 0 ) =/= 0 ) -> q e. ( ( Poly ` ZZ ) \ { 0p } ) ) | 
						
							| 31 | 30 | adantrr |  |-  ( ( q e. ( Poly ` ZZ ) /\ ( ( ( coeff ` q ) ` 0 ) =/= 0 /\ ( q ` _e ) = 0 ) ) -> q e. ( ( Poly ` ZZ ) \ { 0p } ) ) | 
						
							| 32 |  | simprr |  |-  ( ( q e. ( Poly ` ZZ ) /\ ( ( ( coeff ` q ) ` 0 ) =/= 0 /\ ( q ` _e ) = 0 ) ) -> ( q ` _e ) = 0 ) | 
						
							| 33 |  | eqid |  |-  ( coeff ` q ) = ( coeff ` q ) | 
						
							| 34 |  | simprl |  |-  ( ( q e. ( Poly ` ZZ ) /\ ( ( ( coeff ` q ) ` 0 ) =/= 0 /\ ( q ` _e ) = 0 ) ) -> ( ( coeff ` q ) ` 0 ) =/= 0 ) | 
						
							| 35 |  | eqid |  |-  ( deg ` q ) = ( deg ` q ) | 
						
							| 36 |  | eqid |  |-  sum_ l e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) = sum_ l e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) | 
						
							| 37 |  | eqid |  |-  ( n e. NN0 |-> ( sum_ l e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) = ( n e. NN0 |-> ( sum_ l e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) | 
						
							| 38 |  | fveq2 |  |-  ( h = l -> ( ( coeff ` q ) ` h ) = ( ( coeff ` q ) ` l ) ) | 
						
							| 39 |  | oveq2 |  |-  ( h = l -> ( _e ^c h ) = ( _e ^c l ) ) | 
						
							| 40 | 38 39 | oveq12d |  |-  ( h = l -> ( ( ( coeff ` q ) ` h ) x. ( _e ^c h ) ) = ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) | 
						
							| 41 | 40 | fveq2d |  |-  ( h = l -> ( abs ` ( ( ( coeff ` q ) ` h ) x. ( _e ^c h ) ) ) = ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) ) | 
						
							| 42 | 41 | oveq1d |  |-  ( h = l -> ( ( abs ` ( ( ( coeff ` q ) ` h ) x. ( _e ^c h ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) = ( ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) ) | 
						
							| 43 | 42 | cbvsumv |  |-  sum_ h e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` h ) x. ( _e ^c h ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) = sum_ l e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) | 
						
							| 44 | 43 | a1i |  |-  ( m = n -> sum_ h e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` h ) x. ( _e ^c h ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) = sum_ l e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) ) | 
						
							| 45 |  | oveq2 |  |-  ( m = n -> ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ m ) = ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ n ) ) | 
						
							| 46 |  | fveq2 |  |-  ( m = n -> ( ! ` m ) = ( ! ` n ) ) | 
						
							| 47 | 45 46 | oveq12d |  |-  ( m = n -> ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ m ) / ( ! ` m ) ) = ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ n ) / ( ! ` n ) ) ) | 
						
							| 48 | 44 47 | oveq12d |  |-  ( m = n -> ( sum_ h e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` h ) x. ( _e ^c h ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ m ) / ( ! ` m ) ) ) = ( sum_ l e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) | 
						
							| 49 | 48 | cbvmptv |  |-  ( m e. NN0 |-> ( sum_ h e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` h ) x. ( _e ^c h ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ m ) / ( ! ` m ) ) ) ) = ( n e. NN0 |-> ( sum_ l e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) | 
						
							| 50 | 49 | a1i |  |-  ( m = n -> ( m e. NN0 |-> ( sum_ h e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` h ) x. ( _e ^c h ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ m ) / ( ! ` m ) ) ) ) = ( n e. NN0 |-> ( sum_ l e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) ) | 
						
							| 51 |  | id |  |-  ( m = n -> m = n ) | 
						
							| 52 | 50 51 | fveq12d |  |-  ( m = n -> ( ( m e. NN0 |-> ( sum_ h e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` h ) x. ( _e ^c h ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ m ) / ( ! ` m ) ) ) ) ` m ) = ( ( n e. NN0 |-> ( sum_ l e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) ` n ) ) | 
						
							| 53 | 52 | fveq2d |  |-  ( m = n -> ( abs ` ( ( m e. NN0 |-> ( sum_ h e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` h ) x. ( _e ^c h ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ m ) / ( ! ` m ) ) ) ) ` m ) ) = ( abs ` ( ( n e. NN0 |-> ( sum_ l e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) ` n ) ) ) | 
						
							| 54 | 53 | breq1d |  |-  ( m = n -> ( ( abs ` ( ( m e. NN0 |-> ( sum_ h e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` h ) x. ( _e ^c h ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ m ) / ( ! ` m ) ) ) ) ` m ) ) < 1 <-> ( abs ` ( ( n e. NN0 |-> ( sum_ l e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) ` n ) ) < 1 ) ) | 
						
							| 55 | 54 | cbvralvw |  |-  ( A. m e. ( ZZ>= ` j ) ( abs ` ( ( m e. NN0 |-> ( sum_ h e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` h ) x. ( _e ^c h ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ m ) / ( ! ` m ) ) ) ) ` m ) ) < 1 <-> A. n e. ( ZZ>= ` j ) ( abs ` ( ( n e. NN0 |-> ( sum_ l e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) ` n ) ) < 1 ) | 
						
							| 56 |  | fveq2 |  |-  ( j = i -> ( ZZ>= ` j ) = ( ZZ>= ` i ) ) | 
						
							| 57 | 56 | raleqdv |  |-  ( j = i -> ( A. n e. ( ZZ>= ` j ) ( abs ` ( ( n e. NN0 |-> ( sum_ l e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) ` n ) ) < 1 <-> A. n e. ( ZZ>= ` i ) ( abs ` ( ( n e. NN0 |-> ( sum_ l e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) ` n ) ) < 1 ) ) | 
						
							| 58 | 55 57 | bitrid |  |-  ( j = i -> ( A. m e. ( ZZ>= ` j ) ( abs ` ( ( m e. NN0 |-> ( sum_ h e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` h ) x. ( _e ^c h ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ m ) / ( ! ` m ) ) ) ) ` m ) ) < 1 <-> A. n e. ( ZZ>= ` i ) ( abs ` ( ( n e. NN0 |-> ( sum_ l e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) ` n ) ) < 1 ) ) | 
						
							| 59 | 58 | cbvrabv |  |-  { j e. NN0 | A. m e. ( ZZ>= ` j ) ( abs ` ( ( m e. NN0 |-> ( sum_ h e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` h ) x. ( _e ^c h ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ m ) / ( ! ` m ) ) ) ) ` m ) ) < 1 } = { i e. NN0 | A. n e. ( ZZ>= ` i ) ( abs ` ( ( n e. NN0 |-> ( sum_ l e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) ` n ) ) < 1 } | 
						
							| 60 | 59 | infeq1i |  |-  inf ( { j e. NN0 | A. m e. ( ZZ>= ` j ) ( abs ` ( ( m e. NN0 |-> ( sum_ h e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` h ) x. ( _e ^c h ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ m ) / ( ! ` m ) ) ) ) ` m ) ) < 1 } , RR , < ) = inf ( { i e. NN0 | A. n e. ( ZZ>= ` i ) ( abs ` ( ( n e. NN0 |-> ( sum_ l e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` l ) x. ( _e ^c l ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ n ) / ( ! ` n ) ) ) ) ` n ) ) < 1 } , RR , < ) | 
						
							| 61 |  | eqid |  |-  sup ( { ( abs ` ( ( coeff ` q ) ` 0 ) ) , ( ! ` ( deg ` q ) ) , inf ( { j e. NN0 | A. m e. ( ZZ>= ` j ) ( abs ` ( ( m e. NN0 |-> ( sum_ h e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` h ) x. ( _e ^c h ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ m ) / ( ! ` m ) ) ) ) ` m ) ) < 1 } , RR , < ) } , RR* , < ) = sup ( { ( abs ` ( ( coeff ` q ) ` 0 ) ) , ( ! ` ( deg ` q ) ) , inf ( { j e. NN0 | A. m e. ( ZZ>= ` j ) ( abs ` ( ( m e. NN0 |-> ( sum_ h e. ( 0 ... ( deg ` q ) ) ( ( abs ` ( ( ( coeff ` q ) ` h ) x. ( _e ^c h ) ) ) x. ( ( deg ` q ) x. ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ) ) x. ( ( ( ( deg ` q ) ^ ( ( deg ` q ) + 1 ) ) ^ m ) / ( ! ` m ) ) ) ) ` m ) ) < 1 } , RR , < ) } , RR* , < ) | 
						
							| 62 | 31 32 33 34 35 36 37 60 61 | etransclem48 |  |-  ( ( q e. ( Poly ` ZZ ) /\ ( ( ( coeff ` q ) ` 0 ) =/= 0 /\ ( q ` _e ) = 0 ) ) -> E. k e. ZZ ( k =/= 0 /\ ( abs ` k ) < 1 ) ) | 
						
							| 63 | 62 | rexlimiva |  |-  ( E. q e. ( Poly ` ZZ ) ( ( ( coeff ` q ) ` 0 ) =/= 0 /\ ( q ` _e ) = 0 ) -> E. k e. ZZ ( k =/= 0 /\ ( abs ` k ) < 1 ) ) | 
						
							| 64 | 23 63 | syl |  |-  ( -. _e e. ( CC \ AA ) -> E. k e. ZZ ( k =/= 0 /\ ( abs ` k ) < 1 ) ) | 
						
							| 65 | 10 64 | mt3 |  |-  _e e. ( CC \ AA ) |