Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem12.1 |
|- C = ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } ) |
2 |
|
etransclem12.2 |
|- ( ph -> N e. NN0 ) |
3 |
|
oveq2 |
|- ( n = N -> ( 0 ... n ) = ( 0 ... N ) ) |
4 |
3
|
oveq1d |
|- ( n = N -> ( ( 0 ... n ) ^m ( 0 ... M ) ) = ( ( 0 ... N ) ^m ( 0 ... M ) ) ) |
5 |
|
eqeq2 |
|- ( n = N -> ( sum_ j e. ( 0 ... M ) ( c ` j ) = n <-> sum_ j e. ( 0 ... M ) ( c ` j ) = N ) ) |
6 |
4 5
|
rabeqbidv |
|- ( n = N -> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } = { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) |
7 |
|
ovex |
|- ( ( 0 ... N ) ^m ( 0 ... M ) ) e. _V |
8 |
7
|
rabex |
|- { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } e. _V |
9 |
8
|
a1i |
|- ( ph -> { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } e. _V ) |
10 |
1 6 2 9
|
fvmptd3 |
|- ( ph -> ( C ` N ) = { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) |