Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem13.x |
|- ( ph -> X C_ CC ) |
2 |
|
etransclem13.p |
|- ( ph -> P e. NN ) |
3 |
|
etransclem13.m |
|- ( ph -> M e. NN0 ) |
4 |
|
etransclem13.f |
|- F = ( x e. X |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) |
5 |
|
etransclem13.y |
|- ( ph -> Y e. X ) |
6 |
|
eqid |
|- ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) = ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) |
7 |
|
eqid |
|- ( x e. X |-> prod_ j e. ( 0 ... M ) ( ( ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) ` j ) ` x ) ) = ( x e. X |-> prod_ j e. ( 0 ... M ) ( ( ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) ` j ) ` x ) ) |
8 |
1 2 3 4 6 7
|
etransclem4 |
|- ( ph -> F = ( x e. X |-> prod_ j e. ( 0 ... M ) ( ( ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) ` j ) ` x ) ) ) |
9 |
|
simpr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> j e. ( 0 ... M ) ) |
10 |
|
cnex |
|- CC e. _V |
11 |
10
|
ssex |
|- ( X C_ CC -> X e. _V ) |
12 |
|
mptexg |
|- ( X e. _V -> ( y e. X |-> ( ( y - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) e. _V ) |
13 |
1 11 12
|
3syl |
|- ( ph -> ( y e. X |-> ( ( y - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) e. _V ) |
14 |
13
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( y e. X |-> ( ( y - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) e. _V ) |
15 |
|
oveq1 |
|- ( x = y -> ( x - j ) = ( y - j ) ) |
16 |
15
|
oveq1d |
|- ( x = y -> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) = ( ( y - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) |
17 |
16
|
cbvmptv |
|- ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) = ( y e. X |-> ( ( y - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) |
18 |
17
|
mpteq2i |
|- ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) = ( j e. ( 0 ... M ) |-> ( y e. X |-> ( ( y - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) |
19 |
18
|
fvmpt2 |
|- ( ( j e. ( 0 ... M ) /\ ( y e. X |-> ( ( y - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) e. _V ) -> ( ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) ` j ) = ( y e. X |-> ( ( y - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) |
20 |
9 14 19
|
syl2anc |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) ` j ) = ( y e. X |-> ( ( y - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) |
21 |
20
|
adantlr |
|- ( ( ( ph /\ x = Y ) /\ j e. ( 0 ... M ) ) -> ( ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) ` j ) = ( y e. X |-> ( ( y - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) |
22 |
|
simpr |
|- ( ( x = Y /\ y = x ) -> y = x ) |
23 |
|
simpl |
|- ( ( x = Y /\ y = x ) -> x = Y ) |
24 |
22 23
|
eqtrd |
|- ( ( x = Y /\ y = x ) -> y = Y ) |
25 |
|
oveq1 |
|- ( y = Y -> ( y - j ) = ( Y - j ) ) |
26 |
25
|
oveq1d |
|- ( y = Y -> ( ( y - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) = ( ( Y - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) |
27 |
24 26
|
syl |
|- ( ( x = Y /\ y = x ) -> ( ( y - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) = ( ( Y - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) |
28 |
27
|
adantll |
|- ( ( ( ph /\ x = Y ) /\ y = x ) -> ( ( y - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) = ( ( Y - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) |
29 |
28
|
adantlr |
|- ( ( ( ( ph /\ x = Y ) /\ j e. ( 0 ... M ) ) /\ y = x ) -> ( ( y - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) = ( ( Y - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) |
30 |
|
simpr |
|- ( ( ph /\ x = Y ) -> x = Y ) |
31 |
5
|
adantr |
|- ( ( ph /\ x = Y ) -> Y e. X ) |
32 |
30 31
|
eqeltrd |
|- ( ( ph /\ x = Y ) -> x e. X ) |
33 |
32
|
adantr |
|- ( ( ( ph /\ x = Y ) /\ j e. ( 0 ... M ) ) -> x e. X ) |
34 |
|
ovexd |
|- ( ( ( ph /\ x = Y ) /\ j e. ( 0 ... M ) ) -> ( ( Y - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) e. _V ) |
35 |
21 29 33 34
|
fvmptd |
|- ( ( ( ph /\ x = Y ) /\ j e. ( 0 ... M ) ) -> ( ( ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) ` j ) ` x ) = ( ( Y - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) |
36 |
35
|
prodeq2dv |
|- ( ( ph /\ x = Y ) -> prod_ j e. ( 0 ... M ) ( ( ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) ` j ) ` x ) = prod_ j e. ( 0 ... M ) ( ( Y - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) |
37 |
|
prodex |
|- prod_ j e. ( 0 ... M ) ( ( Y - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) e. _V |
38 |
37
|
a1i |
|- ( ph -> prod_ j e. ( 0 ... M ) ( ( Y - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) e. _V ) |
39 |
8 36 5 38
|
fvmptd |
|- ( ph -> ( F ` Y ) = prod_ j e. ( 0 ... M ) ( ( Y - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) |