| Step |
Hyp |
Ref |
Expression |
| 1 |
|
etransclem14.n |
|- ( ph -> P e. NN ) |
| 2 |
|
etransclem14.m |
|- ( ph -> M e. NN0 ) |
| 3 |
|
etransclem14.c |
|- ( ph -> C : ( 0 ... M ) --> ( 0 ... N ) ) |
| 4 |
|
etransclem14.t |
|- T = ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( C ` j ) ) ) x. ( if ( ( P - 1 ) < ( C ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( C ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( C ` j ) ) ) ) ) ) ) |
| 5 |
|
etransclem14.j |
|- ( ph -> J = 0 ) |
| 6 |
|
etransclem14.cpm1 |
|- ( ph -> ( C ` 0 ) = ( P - 1 ) ) |
| 7 |
|
fzssre |
|- ( 0 ... N ) C_ RR |
| 8 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 9 |
2 8
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` 0 ) ) |
| 10 |
|
eluzfz1 |
|- ( M e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... M ) ) |
| 11 |
9 10
|
syl |
|- ( ph -> 0 e. ( 0 ... M ) ) |
| 12 |
3 11
|
ffvelcdmd |
|- ( ph -> ( C ` 0 ) e. ( 0 ... N ) ) |
| 13 |
7 12
|
sselid |
|- ( ph -> ( C ` 0 ) e. RR ) |
| 14 |
6 13
|
eqeltrrd |
|- ( ph -> ( P - 1 ) e. RR ) |
| 15 |
13 14
|
lttri3d |
|- ( ph -> ( ( C ` 0 ) = ( P - 1 ) <-> ( -. ( C ` 0 ) < ( P - 1 ) /\ -. ( P - 1 ) < ( C ` 0 ) ) ) ) |
| 16 |
6 15
|
mpbid |
|- ( ph -> ( -. ( C ` 0 ) < ( P - 1 ) /\ -. ( P - 1 ) < ( C ` 0 ) ) ) |
| 17 |
16
|
simprd |
|- ( ph -> -. ( P - 1 ) < ( C ` 0 ) ) |
| 18 |
17
|
iffalsed |
|- ( ph -> if ( ( P - 1 ) < ( C ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) = ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) |
| 19 |
14
|
recnd |
|- ( ph -> ( P - 1 ) e. CC ) |
| 20 |
6
|
eqcomd |
|- ( ph -> ( P - 1 ) = ( C ` 0 ) ) |
| 21 |
19 20
|
subeq0bd |
|- ( ph -> ( ( P - 1 ) - ( C ` 0 ) ) = 0 ) |
| 22 |
21
|
fveq2d |
|- ( ph -> ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) = ( ! ` 0 ) ) |
| 23 |
|
fac0 |
|- ( ! ` 0 ) = 1 |
| 24 |
22 23
|
eqtrdi |
|- ( ph -> ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) = 1 ) |
| 25 |
24
|
oveq2d |
|- ( ph -> ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) = ( ( ! ` ( P - 1 ) ) / 1 ) ) |
| 26 |
|
nnm1nn0 |
|- ( P e. NN -> ( P - 1 ) e. NN0 ) |
| 27 |
1 26
|
syl |
|- ( ph -> ( P - 1 ) e. NN0 ) |
| 28 |
27
|
faccld |
|- ( ph -> ( ! ` ( P - 1 ) ) e. NN ) |
| 29 |
28
|
nncnd |
|- ( ph -> ( ! ` ( P - 1 ) ) e. CC ) |
| 30 |
29
|
div1d |
|- ( ph -> ( ( ! ` ( P - 1 ) ) / 1 ) = ( ! ` ( P - 1 ) ) ) |
| 31 |
25 30
|
eqtrd |
|- ( ph -> ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) = ( ! ` ( P - 1 ) ) ) |
| 32 |
5 21
|
oveq12d |
|- ( ph -> ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) = ( 0 ^ 0 ) ) |
| 33 |
|
0exp0e1 |
|- ( 0 ^ 0 ) = 1 |
| 34 |
32 33
|
eqtrdi |
|- ( ph -> ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) = 1 ) |
| 35 |
31 34
|
oveq12d |
|- ( ph -> ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) = ( ( ! ` ( P - 1 ) ) x. 1 ) ) |
| 36 |
29
|
mulridd |
|- ( ph -> ( ( ! ` ( P - 1 ) ) x. 1 ) = ( ! ` ( P - 1 ) ) ) |
| 37 |
18 35 36
|
3eqtrd |
|- ( ph -> if ( ( P - 1 ) < ( C ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) = ( ! ` ( P - 1 ) ) ) |
| 38 |
5
|
oveq1d |
|- ( ph -> ( J - j ) = ( 0 - j ) ) |
| 39 |
|
df-neg |
|- -u j = ( 0 - j ) |
| 40 |
38 39
|
eqtr4di |
|- ( ph -> ( J - j ) = -u j ) |
| 41 |
40
|
oveq1d |
|- ( ph -> ( ( J - j ) ^ ( P - ( C ` j ) ) ) = ( -u j ^ ( P - ( C ` j ) ) ) ) |
| 42 |
41
|
oveq2d |
|- ( ph -> ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( C ` j ) ) ) ) = ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( -u j ^ ( P - ( C ` j ) ) ) ) ) |
| 43 |
42
|
ifeq2d |
|- ( ph -> if ( P < ( C ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( C ` j ) ) ) ) ) = if ( P < ( C ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( -u j ^ ( P - ( C ` j ) ) ) ) ) ) |
| 44 |
43
|
prodeq2ad |
|- ( ph -> prod_ j e. ( 1 ... M ) if ( P < ( C ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( C ` j ) ) ) ) ) = prod_ j e. ( 1 ... M ) if ( P < ( C ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( -u j ^ ( P - ( C ` j ) ) ) ) ) ) |
| 45 |
37 44
|
oveq12d |
|- ( ph -> ( if ( ( P - 1 ) < ( C ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( C ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( C ` j ) ) ) ) ) ) = ( ( ! ` ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( C ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( -u j ^ ( P - ( C ` j ) ) ) ) ) ) ) |
| 46 |
45
|
oveq2d |
|- ( ph -> ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( C ` j ) ) ) x. ( if ( ( P - 1 ) < ( C ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( C ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( C ` j ) ) ) ) ) ) ) = ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( C ` j ) ) ) x. ( ( ! ` ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( C ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( -u j ^ ( P - ( C ` j ) ) ) ) ) ) ) ) |
| 47 |
4 46
|
eqtrid |
|- ( ph -> T = ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( C ` j ) ) ) x. ( ( ! ` ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( C ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( -u j ^ ( P - ( C ` j ) ) ) ) ) ) ) ) |