Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem15.p |
|- ( ph -> P e. NN ) |
2 |
|
etransclem15.m |
|- ( ph -> M e. NN0 ) |
3 |
|
etransclem15.n |
|- ( ph -> N e. NN0 ) |
4 |
|
etransclem15.c |
|- ( ph -> C : ( 0 ... M ) --> ( 0 ... N ) ) |
5 |
|
etransclem15.t |
|- T = ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( C ` j ) ) ) x. ( if ( ( P - 1 ) < ( C ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( C ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( C ` j ) ) ) ) ) ) ) |
6 |
|
etransclem15.j |
|- ( ph -> J = 0 ) |
7 |
|
etransclem15.cpm1 |
|- ( ph -> ( C ` 0 ) =/= ( P - 1 ) ) |
8 |
5
|
a1i |
|- ( ph -> T = ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( C ` j ) ) ) x. ( if ( ( P - 1 ) < ( C ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( C ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( C ` j ) ) ) ) ) ) ) ) |
9 |
|
iftrue |
|- ( ( P - 1 ) < ( C ` 0 ) -> if ( ( P - 1 ) < ( C ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) = 0 ) |
10 |
9
|
adantl |
|- ( ( ph /\ ( P - 1 ) < ( C ` 0 ) ) -> if ( ( P - 1 ) < ( C ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) = 0 ) |
11 |
|
iffalse |
|- ( -. ( P - 1 ) < ( C ` 0 ) -> if ( ( P - 1 ) < ( C ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) = ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) |
12 |
11
|
adantl |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> if ( ( P - 1 ) < ( C ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) = ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) |
13 |
6
|
oveq1d |
|- ( ph -> ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) = ( 0 ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) |
14 |
13
|
adantr |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) = ( 0 ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) |
15 |
1
|
nnzd |
|- ( ph -> P e. ZZ ) |
16 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
17 |
15 16
|
zsubcld |
|- ( ph -> ( P - 1 ) e. ZZ ) |
18 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
19 |
2 18
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` 0 ) ) |
20 |
|
eluzfz1 |
|- ( M e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... M ) ) |
21 |
19 20
|
syl |
|- ( ph -> 0 e. ( 0 ... M ) ) |
22 |
4 21
|
ffvelrnd |
|- ( ph -> ( C ` 0 ) e. ( 0 ... N ) ) |
23 |
22
|
elfzelzd |
|- ( ph -> ( C ` 0 ) e. ZZ ) |
24 |
17 23
|
zsubcld |
|- ( ph -> ( ( P - 1 ) - ( C ` 0 ) ) e. ZZ ) |
25 |
24
|
adantr |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( ( P - 1 ) - ( C ` 0 ) ) e. ZZ ) |
26 |
23
|
zred |
|- ( ph -> ( C ` 0 ) e. RR ) |
27 |
26
|
adantr |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( C ` 0 ) e. RR ) |
28 |
17
|
zred |
|- ( ph -> ( P - 1 ) e. RR ) |
29 |
28
|
adantr |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( P - 1 ) e. RR ) |
30 |
|
simpr |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> -. ( P - 1 ) < ( C ` 0 ) ) |
31 |
27 29 30
|
nltled |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( C ` 0 ) <_ ( P - 1 ) ) |
32 |
7
|
necomd |
|- ( ph -> ( P - 1 ) =/= ( C ` 0 ) ) |
33 |
32
|
adantr |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( P - 1 ) =/= ( C ` 0 ) ) |
34 |
27 29 31 33
|
leneltd |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( C ` 0 ) < ( P - 1 ) ) |
35 |
27 29
|
posdifd |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( ( C ` 0 ) < ( P - 1 ) <-> 0 < ( ( P - 1 ) - ( C ` 0 ) ) ) ) |
36 |
34 35
|
mpbid |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> 0 < ( ( P - 1 ) - ( C ` 0 ) ) ) |
37 |
|
elnnz |
|- ( ( ( P - 1 ) - ( C ` 0 ) ) e. NN <-> ( ( ( P - 1 ) - ( C ` 0 ) ) e. ZZ /\ 0 < ( ( P - 1 ) - ( C ` 0 ) ) ) ) |
38 |
25 36 37
|
sylanbrc |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( ( P - 1 ) - ( C ` 0 ) ) e. NN ) |
39 |
38
|
0expd |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( 0 ^ ( ( P - 1 ) - ( C ` 0 ) ) ) = 0 ) |
40 |
14 39
|
eqtrd |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) = 0 ) |
41 |
40
|
oveq2d |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) = ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. 0 ) ) |
42 |
|
nnm1nn0 |
|- ( P e. NN -> ( P - 1 ) e. NN0 ) |
43 |
1 42
|
syl |
|- ( ph -> ( P - 1 ) e. NN0 ) |
44 |
43
|
faccld |
|- ( ph -> ( ! ` ( P - 1 ) ) e. NN ) |
45 |
44
|
nncnd |
|- ( ph -> ( ! ` ( P - 1 ) ) e. CC ) |
46 |
45
|
adantr |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( ! ` ( P - 1 ) ) e. CC ) |
47 |
38
|
nnnn0d |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( ( P - 1 ) - ( C ` 0 ) ) e. NN0 ) |
48 |
47
|
faccld |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) e. NN ) |
49 |
48
|
nncnd |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) e. CC ) |
50 |
48
|
nnne0d |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) =/= 0 ) |
51 |
46 49 50
|
divcld |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) e. CC ) |
52 |
51
|
mul01d |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. 0 ) = 0 ) |
53 |
12 41 52
|
3eqtrd |
|- ( ( ph /\ -. ( P - 1 ) < ( C ` 0 ) ) -> if ( ( P - 1 ) < ( C ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) = 0 ) |
54 |
10 53
|
pm2.61dan |
|- ( ph -> if ( ( P - 1 ) < ( C ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) = 0 ) |
55 |
54
|
oveq1d |
|- ( ph -> ( if ( ( P - 1 ) < ( C ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( C ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( C ` j ) ) ) ) ) ) = ( 0 x. prod_ j e. ( 1 ... M ) if ( P < ( C ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( C ` j ) ) ) ) ) ) ) |
56 |
6 21
|
eqeltrd |
|- ( ph -> J e. ( 0 ... M ) ) |
57 |
1 4 56
|
etransclem7 |
|- ( ph -> prod_ j e. ( 1 ... M ) if ( P < ( C ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( C ` j ) ) ) ) ) e. ZZ ) |
58 |
57
|
zcnd |
|- ( ph -> prod_ j e. ( 1 ... M ) if ( P < ( C ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( C ` j ) ) ) ) ) e. CC ) |
59 |
58
|
mul02d |
|- ( ph -> ( 0 x. prod_ j e. ( 1 ... M ) if ( P < ( C ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( C ` j ) ) ) ) ) ) = 0 ) |
60 |
55 59
|
eqtrd |
|- ( ph -> ( if ( ( P - 1 ) < ( C ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( C ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( C ` j ) ) ) ) ) ) = 0 ) |
61 |
60
|
oveq2d |
|- ( ph -> ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( C ` j ) ) ) x. ( if ( ( P - 1 ) < ( C ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( C ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( C ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( C ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( C ` j ) ) ) ) ) ) ) = ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( C ` j ) ) ) x. 0 ) ) |
62 |
3
|
faccld |
|- ( ph -> ( ! ` N ) e. NN ) |
63 |
62
|
nncnd |
|- ( ph -> ( ! ` N ) e. CC ) |
64 |
|
fzfid |
|- ( ph -> ( 0 ... M ) e. Fin ) |
65 |
|
fzssnn0 |
|- ( 0 ... N ) C_ NN0 |
66 |
4
|
ffvelrnda |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( C ` j ) e. ( 0 ... N ) ) |
67 |
65 66
|
sselid |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( C ` j ) e. NN0 ) |
68 |
67
|
faccld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ! ` ( C ` j ) ) e. NN ) |
69 |
68
|
nncnd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ! ` ( C ` j ) ) e. CC ) |
70 |
64 69
|
fprodcl |
|- ( ph -> prod_ j e. ( 0 ... M ) ( ! ` ( C ` j ) ) e. CC ) |
71 |
68
|
nnne0d |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ! ` ( C ` j ) ) =/= 0 ) |
72 |
64 69 71
|
fprodn0 |
|- ( ph -> prod_ j e. ( 0 ... M ) ( ! ` ( C ` j ) ) =/= 0 ) |
73 |
63 70 72
|
divcld |
|- ( ph -> ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( C ` j ) ) ) e. CC ) |
74 |
73
|
mul01d |
|- ( ph -> ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( C ` j ) ) ) x. 0 ) = 0 ) |
75 |
8 61 74
|
3eqtrd |
|- ( ph -> T = 0 ) |