| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							etransclem16.c | 
							 |-  C = ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } ) | 
						
						
							| 2 | 
							
								
							 | 
							etransclem16.n | 
							 |-  ( ph -> N e. NN0 )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							etransclem12 | 
							 |-  ( ph -> ( C ` N ) = { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) | 
						
						
							| 4 | 
							
								
							 | 
							fzfi | 
							 |-  ( 0 ... N ) e. Fin  | 
						
						
							| 5 | 
							
								
							 | 
							fzfi | 
							 |-  ( 0 ... M ) e. Fin  | 
						
						
							| 6 | 
							
								
							 | 
							mapfi | 
							 |-  ( ( ( 0 ... N ) e. Fin /\ ( 0 ... M ) e. Fin ) -> ( ( 0 ... N ) ^m ( 0 ... M ) ) e. Fin )  | 
						
						
							| 7 | 
							
								4 5 6
							 | 
							mp2an | 
							 |-  ( ( 0 ... N ) ^m ( 0 ... M ) ) e. Fin  | 
						
						
							| 8 | 
							
								
							 | 
							ssrab2 | 
							 |-  { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } C_ ( ( 0 ... N ) ^m ( 0 ... M ) ) | 
						
						
							| 9 | 
							
								
							 | 
							ssfi | 
							 |-  ( ( ( ( 0 ... N ) ^m ( 0 ... M ) ) e. Fin /\ { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } C_ ( ( 0 ... N ) ^m ( 0 ... M ) ) ) -> { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } e. Fin ) | 
						
						
							| 10 | 
							
								7 8 9
							 | 
							mp2an | 
							 |-  { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } e. Fin | 
						
						
							| 11 | 
							
								3 10
							 | 
							eqeltrdi | 
							 |-  ( ph -> ( C ` N ) e. Fin )  |