| Step |
Hyp |
Ref |
Expression |
| 1 |
|
etransclem16.c |
|- C = ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } ) |
| 2 |
|
etransclem16.n |
|- ( ph -> N e. NN0 ) |
| 3 |
1 2
|
etransclem12 |
|- ( ph -> ( C ` N ) = { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) |
| 4 |
|
fzfi |
|- ( 0 ... N ) e. Fin |
| 5 |
|
fzfi |
|- ( 0 ... M ) e. Fin |
| 6 |
|
mapfi |
|- ( ( ( 0 ... N ) e. Fin /\ ( 0 ... M ) e. Fin ) -> ( ( 0 ... N ) ^m ( 0 ... M ) ) e. Fin ) |
| 7 |
4 5 6
|
mp2an |
|- ( ( 0 ... N ) ^m ( 0 ... M ) ) e. Fin |
| 8 |
|
ssrab2 |
|- { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } C_ ( ( 0 ... N ) ^m ( 0 ... M ) ) |
| 9 |
|
ssfi |
|- ( ( ( ( 0 ... N ) ^m ( 0 ... M ) ) e. Fin /\ { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } C_ ( ( 0 ... N ) ^m ( 0 ... M ) ) ) -> { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } e. Fin ) |
| 10 |
7 8 9
|
mp2an |
|- { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } e. Fin |
| 11 |
3 10
|
eqeltrdi |
|- ( ph -> ( C ` N ) e. Fin ) |