| Step |
Hyp |
Ref |
Expression |
| 1 |
|
etransclem17.s |
|- ( ph -> S e. { RR , CC } ) |
| 2 |
|
etransclem17.x |
|- ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) |
| 3 |
|
etransclem17.p |
|- ( ph -> P e. NN ) |
| 4 |
|
etransclem17.1 |
|- H = ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) |
| 5 |
|
etransclem17.J |
|- ( ph -> J e. ( 0 ... M ) ) |
| 6 |
|
etransclem17.n |
|- ( ph -> N e. NN0 ) |
| 7 |
1 2
|
dvdmsscn |
|- ( ph -> X C_ CC ) |
| 8 |
7
|
sselda |
|- ( ( ph /\ x e. X ) -> x e. CC ) |
| 9 |
8
|
adantlr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. X ) -> x e. CC ) |
| 10 |
|
elfzelz |
|- ( j e. ( 0 ... M ) -> j e. ZZ ) |
| 11 |
10
|
zcnd |
|- ( j e. ( 0 ... M ) -> j e. CC ) |
| 12 |
11
|
ad2antlr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. X ) -> j e. CC ) |
| 13 |
9 12
|
negsubd |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. X ) -> ( x + -u j ) = ( x - j ) ) |
| 14 |
13
|
eqcomd |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. X ) -> ( x - j ) = ( x + -u j ) ) |
| 15 |
14
|
oveq1d |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. X ) -> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) = ( ( x + -u j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) |
| 16 |
15
|
mpteq2dva |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) = ( x e. X |-> ( ( x + -u j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) |
| 17 |
16
|
mpteq2dva |
|- ( ph -> ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) = ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x + -u j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) ) |
| 18 |
4 17
|
eqtrid |
|- ( ph -> H = ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x + -u j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) ) |
| 19 |
|
negeq |
|- ( j = J -> -u j = -u J ) |
| 20 |
19
|
oveq2d |
|- ( j = J -> ( x + -u j ) = ( x + -u J ) ) |
| 21 |
|
eqeq1 |
|- ( j = J -> ( j = 0 <-> J = 0 ) ) |
| 22 |
21
|
ifbid |
|- ( j = J -> if ( j = 0 , ( P - 1 ) , P ) = if ( J = 0 , ( P - 1 ) , P ) ) |
| 23 |
20 22
|
oveq12d |
|- ( j = J -> ( ( x + -u j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) = ( ( x + -u J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) |
| 24 |
23
|
mpteq2dv |
|- ( j = J -> ( x e. X |-> ( ( x + -u j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) = ( x e. X |-> ( ( x + -u J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) ) |
| 25 |
24
|
adantl |
|- ( ( ph /\ j = J ) -> ( x e. X |-> ( ( x + -u j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) = ( x e. X |-> ( ( x + -u J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) ) |
| 26 |
|
mptexg |
|- ( X e. ( ( TopOpen ` CCfld ) |`t S ) -> ( x e. X |-> ( ( x + -u J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) e. _V ) |
| 27 |
2 26
|
syl |
|- ( ph -> ( x e. X |-> ( ( x + -u J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) e. _V ) |
| 28 |
18 25 5 27
|
fvmptd |
|- ( ph -> ( H ` J ) = ( x e. X |-> ( ( x + -u J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) ) |
| 29 |
28
|
oveq2d |
|- ( ph -> ( S Dn ( H ` J ) ) = ( S Dn ( x e. X |-> ( ( x + -u J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) ) ) |
| 30 |
29
|
fveq1d |
|- ( ph -> ( ( S Dn ( H ` J ) ) ` N ) = ( ( S Dn ( x e. X |-> ( ( x + -u J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) ) ` N ) ) |
| 31 |
|
elfzelz |
|- ( J e. ( 0 ... M ) -> J e. ZZ ) |
| 32 |
31
|
zcnd |
|- ( J e. ( 0 ... M ) -> J e. CC ) |
| 33 |
5 32
|
syl |
|- ( ph -> J e. CC ) |
| 34 |
33
|
negcld |
|- ( ph -> -u J e. CC ) |
| 35 |
|
nnm1nn0 |
|- ( P e. NN -> ( P - 1 ) e. NN0 ) |
| 36 |
3 35
|
syl |
|- ( ph -> ( P - 1 ) e. NN0 ) |
| 37 |
3
|
nnnn0d |
|- ( ph -> P e. NN0 ) |
| 38 |
36 37
|
ifcld |
|- ( ph -> if ( J = 0 , ( P - 1 ) , P ) e. NN0 ) |
| 39 |
|
eqid |
|- ( x e. X |-> ( ( x + -u J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) = ( x e. X |-> ( ( x + -u J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) |
| 40 |
1 2 34 38 39
|
dvnxpaek |
|- ( ( ph /\ N e. NN0 ) -> ( ( S Dn ( x e. X |-> ( ( x + -u J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) ) ` N ) = ( x e. X |-> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x + -u J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) ) ) |
| 41 |
6 40
|
mpdan |
|- ( ph -> ( ( S Dn ( x e. X |-> ( ( x + -u J ) ^ if ( J = 0 , ( P - 1 ) , P ) ) ) ) ` N ) = ( x e. X |-> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x + -u J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) ) ) |
| 42 |
33
|
adantr |
|- ( ( ph /\ x e. X ) -> J e. CC ) |
| 43 |
8 42
|
negsubd |
|- ( ( ph /\ x e. X ) -> ( x + -u J ) = ( x - J ) ) |
| 44 |
43
|
oveq1d |
|- ( ( ph /\ x e. X ) -> ( ( x + -u J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) = ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) |
| 45 |
44
|
oveq2d |
|- ( ( ph /\ x e. X ) -> ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x + -u J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) = ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) |
| 46 |
45
|
ifeq2d |
|- ( ( ph /\ x e. X ) -> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x + -u J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) = if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) ) |
| 47 |
46
|
mpteq2dva |
|- ( ph -> ( x e. X |-> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x + -u J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) ) = ( x e. X |-> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) ) ) |
| 48 |
30 41 47
|
3eqtrd |
|- ( ph -> ( ( S Dn ( H ` J ) ) ` N ) = ( x e. X |-> if ( if ( J = 0 , ( P - 1 ) , P ) < N , 0 , ( ( ( ! ` if ( J = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) x. ( ( x - J ) ^ ( if ( J = 0 , ( P - 1 ) , P ) - N ) ) ) ) ) ) |