| Step |
Hyp |
Ref |
Expression |
| 1 |
|
etransclem2.xf |
|- F/_ x F |
| 2 |
|
etransclem2.f |
|- ( ph -> F : RR --> CC ) |
| 3 |
|
etransclem2.dvnf |
|- ( ( ph /\ i e. ( 0 ... ( R + 1 ) ) ) -> ( ( RR Dn F ) ` i ) : RR --> CC ) |
| 4 |
|
etransclem2.g |
|- G = ( x e. RR |-> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) ) |
| 5 |
4
|
oveq2i |
|- ( RR _D G ) = ( RR _D ( x e. RR |-> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) ) ) |
| 6 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 7 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 8 |
|
reelprrecn |
|- RR e. { RR , CC } |
| 9 |
8
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
| 10 |
|
reopn |
|- RR e. ( topGen ` ran (,) ) |
| 11 |
10
|
a1i |
|- ( ph -> RR e. ( topGen ` ran (,) ) ) |
| 12 |
|
fzfid |
|- ( ph -> ( 0 ... R ) e. Fin ) |
| 13 |
|
fzelp1 |
|- ( i e. ( 0 ... R ) -> i e. ( 0 ... ( R + 1 ) ) ) |
| 14 |
13 3
|
sylan2 |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` i ) : RR --> CC ) |
| 15 |
14
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ... R ) /\ x e. RR ) -> ( ( RR Dn F ) ` i ) : RR --> CC ) |
| 16 |
|
simp3 |
|- ( ( ph /\ i e. ( 0 ... R ) /\ x e. RR ) -> x e. RR ) |
| 17 |
15 16
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 0 ... R ) /\ x e. RR ) -> ( ( ( RR Dn F ) ` i ) ` x ) e. CC ) |
| 18 |
|
fzp1elp1 |
|- ( i e. ( 0 ... R ) -> ( i + 1 ) e. ( 0 ... ( R + 1 ) ) ) |
| 19 |
|
ovex |
|- ( i + 1 ) e. _V |
| 20 |
|
eleq1 |
|- ( j = ( i + 1 ) -> ( j e. ( 0 ... ( R + 1 ) ) <-> ( i + 1 ) e. ( 0 ... ( R + 1 ) ) ) ) |
| 21 |
20
|
anbi2d |
|- ( j = ( i + 1 ) -> ( ( ph /\ j e. ( 0 ... ( R + 1 ) ) ) <-> ( ph /\ ( i + 1 ) e. ( 0 ... ( R + 1 ) ) ) ) ) |
| 22 |
|
fveq2 |
|- ( j = ( i + 1 ) -> ( ( RR Dn F ) ` j ) = ( ( RR Dn F ) ` ( i + 1 ) ) ) |
| 23 |
22
|
feq1d |
|- ( j = ( i + 1 ) -> ( ( ( RR Dn F ) ` j ) : RR --> CC <-> ( ( RR Dn F ) ` ( i + 1 ) ) : RR --> CC ) ) |
| 24 |
21 23
|
imbi12d |
|- ( j = ( i + 1 ) -> ( ( ( ph /\ j e. ( 0 ... ( R + 1 ) ) ) -> ( ( RR Dn F ) ` j ) : RR --> CC ) <-> ( ( ph /\ ( i + 1 ) e. ( 0 ... ( R + 1 ) ) ) -> ( ( RR Dn F ) ` ( i + 1 ) ) : RR --> CC ) ) ) |
| 25 |
|
eleq1 |
|- ( i = j -> ( i e. ( 0 ... ( R + 1 ) ) <-> j e. ( 0 ... ( R + 1 ) ) ) ) |
| 26 |
25
|
anbi2d |
|- ( i = j -> ( ( ph /\ i e. ( 0 ... ( R + 1 ) ) ) <-> ( ph /\ j e. ( 0 ... ( R + 1 ) ) ) ) ) |
| 27 |
|
fveq2 |
|- ( i = j -> ( ( RR Dn F ) ` i ) = ( ( RR Dn F ) ` j ) ) |
| 28 |
27
|
feq1d |
|- ( i = j -> ( ( ( RR Dn F ) ` i ) : RR --> CC <-> ( ( RR Dn F ) ` j ) : RR --> CC ) ) |
| 29 |
26 28
|
imbi12d |
|- ( i = j -> ( ( ( ph /\ i e. ( 0 ... ( R + 1 ) ) ) -> ( ( RR Dn F ) ` i ) : RR --> CC ) <-> ( ( ph /\ j e. ( 0 ... ( R + 1 ) ) ) -> ( ( RR Dn F ) ` j ) : RR --> CC ) ) ) |
| 30 |
29 3
|
chvarvv |
|- ( ( ph /\ j e. ( 0 ... ( R + 1 ) ) ) -> ( ( RR Dn F ) ` j ) : RR --> CC ) |
| 31 |
19 24 30
|
vtocl |
|- ( ( ph /\ ( i + 1 ) e. ( 0 ... ( R + 1 ) ) ) -> ( ( RR Dn F ) ` ( i + 1 ) ) : RR --> CC ) |
| 32 |
18 31
|
sylan2 |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` ( i + 1 ) ) : RR --> CC ) |
| 33 |
32
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ... R ) /\ x e. RR ) -> ( ( RR Dn F ) ` ( i + 1 ) ) : RR --> CC ) |
| 34 |
33 16
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 0 ... R ) /\ x e. RR ) -> ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) e. CC ) |
| 35 |
14
|
ffnd |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` i ) Fn RR ) |
| 36 |
|
nfcv |
|- F/_ x RR |
| 37 |
|
nfcv |
|- F/_ x Dn |
| 38 |
36 37 1
|
nfov |
|- F/_ x ( RR Dn F ) |
| 39 |
|
nfcv |
|- F/_ x i |
| 40 |
38 39
|
nffv |
|- F/_ x ( ( RR Dn F ) ` i ) |
| 41 |
40
|
dffn5f |
|- ( ( ( RR Dn F ) ` i ) Fn RR <-> ( ( RR Dn F ) ` i ) = ( x e. RR |-> ( ( ( RR Dn F ) ` i ) ` x ) ) ) |
| 42 |
35 41
|
sylib |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` i ) = ( x e. RR |-> ( ( ( RR Dn F ) ` i ) ` x ) ) ) |
| 43 |
42
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> ( x e. RR |-> ( ( ( RR Dn F ) ` i ) ` x ) ) = ( ( RR Dn F ) ` i ) ) |
| 44 |
43
|
oveq2d |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> ( RR _D ( x e. RR |-> ( ( ( RR Dn F ) ` i ) ` x ) ) ) = ( RR _D ( ( RR Dn F ) ` i ) ) ) |
| 45 |
|
ax-resscn |
|- RR C_ CC |
| 46 |
45
|
a1i |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> RR C_ CC ) |
| 47 |
|
ffdm |
|- ( F : RR --> CC -> ( F : dom F --> CC /\ dom F C_ RR ) ) |
| 48 |
2 47
|
syl |
|- ( ph -> ( F : dom F --> CC /\ dom F C_ RR ) ) |
| 49 |
|
cnex |
|- CC e. _V |
| 50 |
49
|
a1i |
|- ( ph -> CC e. _V ) |
| 51 |
|
reex |
|- RR e. _V |
| 52 |
|
elpm2g |
|- ( ( CC e. _V /\ RR e. _V ) -> ( F e. ( CC ^pm RR ) <-> ( F : dom F --> CC /\ dom F C_ RR ) ) ) |
| 53 |
50 51 52
|
sylancl |
|- ( ph -> ( F e. ( CC ^pm RR ) <-> ( F : dom F --> CC /\ dom F C_ RR ) ) ) |
| 54 |
48 53
|
mpbird |
|- ( ph -> F e. ( CC ^pm RR ) ) |
| 55 |
54
|
adantr |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> F e. ( CC ^pm RR ) ) |
| 56 |
|
elfznn0 |
|- ( i e. ( 0 ... R ) -> i e. NN0 ) |
| 57 |
56
|
adantl |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> i e. NN0 ) |
| 58 |
|
dvnp1 |
|- ( ( RR C_ CC /\ F e. ( CC ^pm RR ) /\ i e. NN0 ) -> ( ( RR Dn F ) ` ( i + 1 ) ) = ( RR _D ( ( RR Dn F ) ` i ) ) ) |
| 59 |
46 55 57 58
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` ( i + 1 ) ) = ( RR _D ( ( RR Dn F ) ` i ) ) ) |
| 60 |
32
|
ffnd |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` ( i + 1 ) ) Fn RR ) |
| 61 |
|
nfcv |
|- F/_ x ( i + 1 ) |
| 62 |
38 61
|
nffv |
|- F/_ x ( ( RR Dn F ) ` ( i + 1 ) ) |
| 63 |
62
|
dffn5f |
|- ( ( ( RR Dn F ) ` ( i + 1 ) ) Fn RR <-> ( ( RR Dn F ) ` ( i + 1 ) ) = ( x e. RR |-> ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) ) |
| 64 |
60 63
|
sylib |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` ( i + 1 ) ) = ( x e. RR |-> ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) ) |
| 65 |
44 59 64
|
3eqtr2d |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> ( RR _D ( x e. RR |-> ( ( ( RR Dn F ) ` i ) ` x ) ) ) = ( x e. RR |-> ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) ) |
| 66 |
6 7 9 11 12 17 34 65
|
dvmptfsum |
|- ( ph -> ( RR _D ( x e. RR |-> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) ) ) = ( x e. RR |-> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) ) |
| 67 |
5 66
|
eqtrid |
|- ( ph -> ( RR _D G ) = ( x e. RR |-> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) ) |