Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem2.xf |
|- F/_ x F |
2 |
|
etransclem2.f |
|- ( ph -> F : RR --> CC ) |
3 |
|
etransclem2.dvnf |
|- ( ( ph /\ i e. ( 0 ... ( R + 1 ) ) ) -> ( ( RR Dn F ) ` i ) : RR --> CC ) |
4 |
|
etransclem2.g |
|- G = ( x e. RR |-> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) ) |
5 |
4
|
oveq2i |
|- ( RR _D G ) = ( RR _D ( x e. RR |-> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) ) ) |
6 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
7 |
6
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
8 |
|
reelprrecn |
|- RR e. { RR , CC } |
9 |
8
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
10 |
|
reopn |
|- RR e. ( topGen ` ran (,) ) |
11 |
10
|
a1i |
|- ( ph -> RR e. ( topGen ` ran (,) ) ) |
12 |
|
fzfid |
|- ( ph -> ( 0 ... R ) e. Fin ) |
13 |
|
fzelp1 |
|- ( i e. ( 0 ... R ) -> i e. ( 0 ... ( R + 1 ) ) ) |
14 |
13 3
|
sylan2 |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` i ) : RR --> CC ) |
15 |
14
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ... R ) /\ x e. RR ) -> ( ( RR Dn F ) ` i ) : RR --> CC ) |
16 |
|
simp3 |
|- ( ( ph /\ i e. ( 0 ... R ) /\ x e. RR ) -> x e. RR ) |
17 |
15 16
|
ffvelrnd |
|- ( ( ph /\ i e. ( 0 ... R ) /\ x e. RR ) -> ( ( ( RR Dn F ) ` i ) ` x ) e. CC ) |
18 |
|
fzp1elp1 |
|- ( i e. ( 0 ... R ) -> ( i + 1 ) e. ( 0 ... ( R + 1 ) ) ) |
19 |
|
ovex |
|- ( i + 1 ) e. _V |
20 |
|
eleq1 |
|- ( j = ( i + 1 ) -> ( j e. ( 0 ... ( R + 1 ) ) <-> ( i + 1 ) e. ( 0 ... ( R + 1 ) ) ) ) |
21 |
20
|
anbi2d |
|- ( j = ( i + 1 ) -> ( ( ph /\ j e. ( 0 ... ( R + 1 ) ) ) <-> ( ph /\ ( i + 1 ) e. ( 0 ... ( R + 1 ) ) ) ) ) |
22 |
|
fveq2 |
|- ( j = ( i + 1 ) -> ( ( RR Dn F ) ` j ) = ( ( RR Dn F ) ` ( i + 1 ) ) ) |
23 |
22
|
feq1d |
|- ( j = ( i + 1 ) -> ( ( ( RR Dn F ) ` j ) : RR --> CC <-> ( ( RR Dn F ) ` ( i + 1 ) ) : RR --> CC ) ) |
24 |
21 23
|
imbi12d |
|- ( j = ( i + 1 ) -> ( ( ( ph /\ j e. ( 0 ... ( R + 1 ) ) ) -> ( ( RR Dn F ) ` j ) : RR --> CC ) <-> ( ( ph /\ ( i + 1 ) e. ( 0 ... ( R + 1 ) ) ) -> ( ( RR Dn F ) ` ( i + 1 ) ) : RR --> CC ) ) ) |
25 |
|
eleq1 |
|- ( i = j -> ( i e. ( 0 ... ( R + 1 ) ) <-> j e. ( 0 ... ( R + 1 ) ) ) ) |
26 |
25
|
anbi2d |
|- ( i = j -> ( ( ph /\ i e. ( 0 ... ( R + 1 ) ) ) <-> ( ph /\ j e. ( 0 ... ( R + 1 ) ) ) ) ) |
27 |
|
fveq2 |
|- ( i = j -> ( ( RR Dn F ) ` i ) = ( ( RR Dn F ) ` j ) ) |
28 |
27
|
feq1d |
|- ( i = j -> ( ( ( RR Dn F ) ` i ) : RR --> CC <-> ( ( RR Dn F ) ` j ) : RR --> CC ) ) |
29 |
26 28
|
imbi12d |
|- ( i = j -> ( ( ( ph /\ i e. ( 0 ... ( R + 1 ) ) ) -> ( ( RR Dn F ) ` i ) : RR --> CC ) <-> ( ( ph /\ j e. ( 0 ... ( R + 1 ) ) ) -> ( ( RR Dn F ) ` j ) : RR --> CC ) ) ) |
30 |
29 3
|
chvarvv |
|- ( ( ph /\ j e. ( 0 ... ( R + 1 ) ) ) -> ( ( RR Dn F ) ` j ) : RR --> CC ) |
31 |
19 24 30
|
vtocl |
|- ( ( ph /\ ( i + 1 ) e. ( 0 ... ( R + 1 ) ) ) -> ( ( RR Dn F ) ` ( i + 1 ) ) : RR --> CC ) |
32 |
18 31
|
sylan2 |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` ( i + 1 ) ) : RR --> CC ) |
33 |
32
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ... R ) /\ x e. RR ) -> ( ( RR Dn F ) ` ( i + 1 ) ) : RR --> CC ) |
34 |
33 16
|
ffvelrnd |
|- ( ( ph /\ i e. ( 0 ... R ) /\ x e. RR ) -> ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) e. CC ) |
35 |
14
|
ffnd |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` i ) Fn RR ) |
36 |
|
nfcv |
|- F/_ x RR |
37 |
|
nfcv |
|- F/_ x Dn |
38 |
36 37 1
|
nfov |
|- F/_ x ( RR Dn F ) |
39 |
|
nfcv |
|- F/_ x i |
40 |
38 39
|
nffv |
|- F/_ x ( ( RR Dn F ) ` i ) |
41 |
40
|
dffn5f |
|- ( ( ( RR Dn F ) ` i ) Fn RR <-> ( ( RR Dn F ) ` i ) = ( x e. RR |-> ( ( ( RR Dn F ) ` i ) ` x ) ) ) |
42 |
35 41
|
sylib |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` i ) = ( x e. RR |-> ( ( ( RR Dn F ) ` i ) ` x ) ) ) |
43 |
42
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> ( x e. RR |-> ( ( ( RR Dn F ) ` i ) ` x ) ) = ( ( RR Dn F ) ` i ) ) |
44 |
43
|
oveq2d |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> ( RR _D ( x e. RR |-> ( ( ( RR Dn F ) ` i ) ` x ) ) ) = ( RR _D ( ( RR Dn F ) ` i ) ) ) |
45 |
|
ax-resscn |
|- RR C_ CC |
46 |
45
|
a1i |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> RR C_ CC ) |
47 |
|
ffdm |
|- ( F : RR --> CC -> ( F : dom F --> CC /\ dom F C_ RR ) ) |
48 |
2 47
|
syl |
|- ( ph -> ( F : dom F --> CC /\ dom F C_ RR ) ) |
49 |
|
cnex |
|- CC e. _V |
50 |
49
|
a1i |
|- ( ph -> CC e. _V ) |
51 |
|
reex |
|- RR e. _V |
52 |
|
elpm2g |
|- ( ( CC e. _V /\ RR e. _V ) -> ( F e. ( CC ^pm RR ) <-> ( F : dom F --> CC /\ dom F C_ RR ) ) ) |
53 |
50 51 52
|
sylancl |
|- ( ph -> ( F e. ( CC ^pm RR ) <-> ( F : dom F --> CC /\ dom F C_ RR ) ) ) |
54 |
48 53
|
mpbird |
|- ( ph -> F e. ( CC ^pm RR ) ) |
55 |
54
|
adantr |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> F e. ( CC ^pm RR ) ) |
56 |
|
elfznn0 |
|- ( i e. ( 0 ... R ) -> i e. NN0 ) |
57 |
56
|
adantl |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> i e. NN0 ) |
58 |
|
dvnp1 |
|- ( ( RR C_ CC /\ F e. ( CC ^pm RR ) /\ i e. NN0 ) -> ( ( RR Dn F ) ` ( i + 1 ) ) = ( RR _D ( ( RR Dn F ) ` i ) ) ) |
59 |
46 55 57 58
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` ( i + 1 ) ) = ( RR _D ( ( RR Dn F ) ` i ) ) ) |
60 |
32
|
ffnd |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` ( i + 1 ) ) Fn RR ) |
61 |
|
nfcv |
|- F/_ x ( i + 1 ) |
62 |
38 61
|
nffv |
|- F/_ x ( ( RR Dn F ) ` ( i + 1 ) ) |
63 |
62
|
dffn5f |
|- ( ( ( RR Dn F ) ` ( i + 1 ) ) Fn RR <-> ( ( RR Dn F ) ` ( i + 1 ) ) = ( x e. RR |-> ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) ) |
64 |
60 63
|
sylib |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` ( i + 1 ) ) = ( x e. RR |-> ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) ) |
65 |
44 59 64
|
3eqtr2d |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> ( RR _D ( x e. RR |-> ( ( ( RR Dn F ) ` i ) ` x ) ) ) = ( x e. RR |-> ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) ) |
66 |
7 6 9 11 12 17 34 65
|
dvmptfsum |
|- ( ph -> ( RR _D ( x e. RR |-> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) ) ) = ( x e. RR |-> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) ) |
67 |
5 66
|
eqtrid |
|- ( ph -> ( RR _D G ) = ( x e. RR |-> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) ) |