Metamath Proof Explorer


Theorem etransclem2

Description: Derivative of G . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem2.xf
|- F/_ x F
etransclem2.f
|- ( ph -> F : RR --> CC )
etransclem2.dvnf
|- ( ( ph /\ i e. ( 0 ... ( R + 1 ) ) ) -> ( ( RR Dn F ) ` i ) : RR --> CC )
etransclem2.g
|- G = ( x e. RR |-> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) )
Assertion etransclem2
|- ( ph -> ( RR _D G ) = ( x e. RR |-> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) )

Proof

Step Hyp Ref Expression
1 etransclem2.xf
 |-  F/_ x F
2 etransclem2.f
 |-  ( ph -> F : RR --> CC )
3 etransclem2.dvnf
 |-  ( ( ph /\ i e. ( 0 ... ( R + 1 ) ) ) -> ( ( RR Dn F ) ` i ) : RR --> CC )
4 etransclem2.g
 |-  G = ( x e. RR |-> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) )
5 4 oveq2i
 |-  ( RR _D G ) = ( RR _D ( x e. RR |-> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) ) )
6 eqid
 |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld )
7 6 tgioo2
 |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR )
8 reelprrecn
 |-  RR e. { RR , CC }
9 8 a1i
 |-  ( ph -> RR e. { RR , CC } )
10 reopn
 |-  RR e. ( topGen ` ran (,) )
11 10 a1i
 |-  ( ph -> RR e. ( topGen ` ran (,) ) )
12 fzfid
 |-  ( ph -> ( 0 ... R ) e. Fin )
13 fzelp1
 |-  ( i e. ( 0 ... R ) -> i e. ( 0 ... ( R + 1 ) ) )
14 13 3 sylan2
 |-  ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` i ) : RR --> CC )
15 14 3adant3
 |-  ( ( ph /\ i e. ( 0 ... R ) /\ x e. RR ) -> ( ( RR Dn F ) ` i ) : RR --> CC )
16 simp3
 |-  ( ( ph /\ i e. ( 0 ... R ) /\ x e. RR ) -> x e. RR )
17 15 16 ffvelrnd
 |-  ( ( ph /\ i e. ( 0 ... R ) /\ x e. RR ) -> ( ( ( RR Dn F ) ` i ) ` x ) e. CC )
18 fzp1elp1
 |-  ( i e. ( 0 ... R ) -> ( i + 1 ) e. ( 0 ... ( R + 1 ) ) )
19 ovex
 |-  ( i + 1 ) e. _V
20 eleq1
 |-  ( j = ( i + 1 ) -> ( j e. ( 0 ... ( R + 1 ) ) <-> ( i + 1 ) e. ( 0 ... ( R + 1 ) ) ) )
21 20 anbi2d
 |-  ( j = ( i + 1 ) -> ( ( ph /\ j e. ( 0 ... ( R + 1 ) ) ) <-> ( ph /\ ( i + 1 ) e. ( 0 ... ( R + 1 ) ) ) ) )
22 fveq2
 |-  ( j = ( i + 1 ) -> ( ( RR Dn F ) ` j ) = ( ( RR Dn F ) ` ( i + 1 ) ) )
23 22 feq1d
 |-  ( j = ( i + 1 ) -> ( ( ( RR Dn F ) ` j ) : RR --> CC <-> ( ( RR Dn F ) ` ( i + 1 ) ) : RR --> CC ) )
24 21 23 imbi12d
 |-  ( j = ( i + 1 ) -> ( ( ( ph /\ j e. ( 0 ... ( R + 1 ) ) ) -> ( ( RR Dn F ) ` j ) : RR --> CC ) <-> ( ( ph /\ ( i + 1 ) e. ( 0 ... ( R + 1 ) ) ) -> ( ( RR Dn F ) ` ( i + 1 ) ) : RR --> CC ) ) )
25 eleq1
 |-  ( i = j -> ( i e. ( 0 ... ( R + 1 ) ) <-> j e. ( 0 ... ( R + 1 ) ) ) )
26 25 anbi2d
 |-  ( i = j -> ( ( ph /\ i e. ( 0 ... ( R + 1 ) ) ) <-> ( ph /\ j e. ( 0 ... ( R + 1 ) ) ) ) )
27 fveq2
 |-  ( i = j -> ( ( RR Dn F ) ` i ) = ( ( RR Dn F ) ` j ) )
28 27 feq1d
 |-  ( i = j -> ( ( ( RR Dn F ) ` i ) : RR --> CC <-> ( ( RR Dn F ) ` j ) : RR --> CC ) )
29 26 28 imbi12d
 |-  ( i = j -> ( ( ( ph /\ i e. ( 0 ... ( R + 1 ) ) ) -> ( ( RR Dn F ) ` i ) : RR --> CC ) <-> ( ( ph /\ j e. ( 0 ... ( R + 1 ) ) ) -> ( ( RR Dn F ) ` j ) : RR --> CC ) ) )
30 29 3 chvarvv
 |-  ( ( ph /\ j e. ( 0 ... ( R + 1 ) ) ) -> ( ( RR Dn F ) ` j ) : RR --> CC )
31 19 24 30 vtocl
 |-  ( ( ph /\ ( i + 1 ) e. ( 0 ... ( R + 1 ) ) ) -> ( ( RR Dn F ) ` ( i + 1 ) ) : RR --> CC )
32 18 31 sylan2
 |-  ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` ( i + 1 ) ) : RR --> CC )
33 32 3adant3
 |-  ( ( ph /\ i e. ( 0 ... R ) /\ x e. RR ) -> ( ( RR Dn F ) ` ( i + 1 ) ) : RR --> CC )
34 33 16 ffvelrnd
 |-  ( ( ph /\ i e. ( 0 ... R ) /\ x e. RR ) -> ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) e. CC )
35 14 ffnd
 |-  ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` i ) Fn RR )
36 nfcv
 |-  F/_ x RR
37 nfcv
 |-  F/_ x Dn
38 36 37 1 nfov
 |-  F/_ x ( RR Dn F )
39 nfcv
 |-  F/_ x i
40 38 39 nffv
 |-  F/_ x ( ( RR Dn F ) ` i )
41 40 dffn5f
 |-  ( ( ( RR Dn F ) ` i ) Fn RR <-> ( ( RR Dn F ) ` i ) = ( x e. RR |-> ( ( ( RR Dn F ) ` i ) ` x ) ) )
42 35 41 sylib
 |-  ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` i ) = ( x e. RR |-> ( ( ( RR Dn F ) ` i ) ` x ) ) )
43 42 eqcomd
 |-  ( ( ph /\ i e. ( 0 ... R ) ) -> ( x e. RR |-> ( ( ( RR Dn F ) ` i ) ` x ) ) = ( ( RR Dn F ) ` i ) )
44 43 oveq2d
 |-  ( ( ph /\ i e. ( 0 ... R ) ) -> ( RR _D ( x e. RR |-> ( ( ( RR Dn F ) ` i ) ` x ) ) ) = ( RR _D ( ( RR Dn F ) ` i ) ) )
45 ax-resscn
 |-  RR C_ CC
46 45 a1i
 |-  ( ( ph /\ i e. ( 0 ... R ) ) -> RR C_ CC )
47 ffdm
 |-  ( F : RR --> CC -> ( F : dom F --> CC /\ dom F C_ RR ) )
48 2 47 syl
 |-  ( ph -> ( F : dom F --> CC /\ dom F C_ RR ) )
49 cnex
 |-  CC e. _V
50 49 a1i
 |-  ( ph -> CC e. _V )
51 reex
 |-  RR e. _V
52 elpm2g
 |-  ( ( CC e. _V /\ RR e. _V ) -> ( F e. ( CC ^pm RR ) <-> ( F : dom F --> CC /\ dom F C_ RR ) ) )
53 50 51 52 sylancl
 |-  ( ph -> ( F e. ( CC ^pm RR ) <-> ( F : dom F --> CC /\ dom F C_ RR ) ) )
54 48 53 mpbird
 |-  ( ph -> F e. ( CC ^pm RR ) )
55 54 adantr
 |-  ( ( ph /\ i e. ( 0 ... R ) ) -> F e. ( CC ^pm RR ) )
56 elfznn0
 |-  ( i e. ( 0 ... R ) -> i e. NN0 )
57 56 adantl
 |-  ( ( ph /\ i e. ( 0 ... R ) ) -> i e. NN0 )
58 dvnp1
 |-  ( ( RR C_ CC /\ F e. ( CC ^pm RR ) /\ i e. NN0 ) -> ( ( RR Dn F ) ` ( i + 1 ) ) = ( RR _D ( ( RR Dn F ) ` i ) ) )
59 46 55 57 58 syl3anc
 |-  ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` ( i + 1 ) ) = ( RR _D ( ( RR Dn F ) ` i ) ) )
60 32 ffnd
 |-  ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` ( i + 1 ) ) Fn RR )
61 nfcv
 |-  F/_ x ( i + 1 )
62 38 61 nffv
 |-  F/_ x ( ( RR Dn F ) ` ( i + 1 ) )
63 62 dffn5f
 |-  ( ( ( RR Dn F ) ` ( i + 1 ) ) Fn RR <-> ( ( RR Dn F ) ` ( i + 1 ) ) = ( x e. RR |-> ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) )
64 60 63 sylib
 |-  ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` ( i + 1 ) ) = ( x e. RR |-> ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) )
65 44 59 64 3eqtr2d
 |-  ( ( ph /\ i e. ( 0 ... R ) ) -> ( RR _D ( x e. RR |-> ( ( ( RR Dn F ) ` i ) ` x ) ) ) = ( x e. RR |-> ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) )
66 7 6 9 11 12 17 34 65 dvmptfsum
 |-  ( ph -> ( RR _D ( x e. RR |-> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) ) ) = ( x e. RR |-> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) )
67 5 66 eqtrid
 |-  ( ph -> ( RR _D G ) = ( x e. RR |-> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` ( i + 1 ) ) ` x ) ) )