| Step |
Hyp |
Ref |
Expression |
| 1 |
|
etransclem23.a |
|- ( ph -> A : NN0 --> ZZ ) |
| 2 |
|
etransclem23.l |
|- L = sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) |
| 3 |
|
etransclem23.k |
|- K = ( L / ( ! ` ( P - 1 ) ) ) |
| 4 |
|
etransclem23.p |
|- ( ph -> P e. NN ) |
| 5 |
|
etransclem23.m |
|- ( ph -> M e. NN ) |
| 6 |
|
etransclem23.f |
|- F = ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) |
| 7 |
|
etransclem23.lt1 |
|- ( ph -> ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) / ( ! ` ( P - 1 ) ) ) ) < 1 ) |
| 8 |
2
|
oveq1i |
|- ( L / ( ! ` ( P - 1 ) ) ) = ( sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) / ( ! ` ( P - 1 ) ) ) |
| 9 |
3 8
|
eqtri |
|- K = ( sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) / ( ! ` ( P - 1 ) ) ) |
| 10 |
9
|
fveq2i |
|- ( abs ` K ) = ( abs ` ( sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) / ( ! ` ( P - 1 ) ) ) ) |
| 11 |
10
|
a1i |
|- ( ph -> ( abs ` K ) = ( abs ` ( sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) / ( ! ` ( P - 1 ) ) ) ) ) |
| 12 |
|
fzfid |
|- ( ph -> ( 0 ... M ) e. Fin ) |
| 13 |
1
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> A : NN0 --> ZZ ) |
| 14 |
|
elfznn0 |
|- ( j e. ( 0 ... M ) -> j e. NN0 ) |
| 15 |
14
|
adantl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> j e. NN0 ) |
| 16 |
13 15
|
ffvelcdmd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( A ` j ) e. ZZ ) |
| 17 |
16
|
zcnd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( A ` j ) e. CC ) |
| 18 |
|
ere |
|- _e e. RR |
| 19 |
18
|
recni |
|- _e e. CC |
| 20 |
19
|
a1i |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> _e e. CC ) |
| 21 |
|
elfzelz |
|- ( j e. ( 0 ... M ) -> j e. ZZ ) |
| 22 |
21
|
zcnd |
|- ( j e. ( 0 ... M ) -> j e. CC ) |
| 23 |
22
|
adantl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> j e. CC ) |
| 24 |
20 23
|
cxpcld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( _e ^c j ) e. CC ) |
| 25 |
17 24
|
mulcld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( A ` j ) x. ( _e ^c j ) ) e. CC ) |
| 26 |
19
|
a1i |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> _e e. CC ) |
| 27 |
|
elioore |
|- ( x e. ( 0 (,) j ) -> x e. RR ) |
| 28 |
27
|
recnd |
|- ( x e. ( 0 (,) j ) -> x e. CC ) |
| 29 |
28
|
adantl |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> x e. CC ) |
| 30 |
29
|
negcld |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> -u x e. CC ) |
| 31 |
26 30
|
cxpcld |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( _e ^c -u x ) e. CC ) |
| 32 |
|
ax-resscn |
|- RR C_ CC |
| 33 |
32
|
a1i |
|- ( ph -> RR C_ CC ) |
| 34 |
33 4 6
|
etransclem8 |
|- ( ph -> F : RR --> CC ) |
| 35 |
34
|
adantr |
|- ( ( ph /\ x e. ( 0 (,) j ) ) -> F : RR --> CC ) |
| 36 |
27
|
adantl |
|- ( ( ph /\ x e. ( 0 (,) j ) ) -> x e. RR ) |
| 37 |
35 36
|
ffvelcdmd |
|- ( ( ph /\ x e. ( 0 (,) j ) ) -> ( F ` x ) e. CC ) |
| 38 |
37
|
adantlr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( F ` x ) e. CC ) |
| 39 |
31 38
|
mulcld |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( ( _e ^c -u x ) x. ( F ` x ) ) e. CC ) |
| 40 |
|
reelprrecn |
|- RR e. { RR , CC } |
| 41 |
40
|
a1i |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> RR e. { RR , CC } ) |
| 42 |
|
reopn |
|- RR e. ( topGen ` ran (,) ) |
| 43 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 44 |
42 43
|
eleqtri |
|- RR e. ( ( TopOpen ` CCfld ) |`t RR ) |
| 45 |
44
|
a1i |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> RR e. ( ( TopOpen ` CCfld ) |`t RR ) ) |
| 46 |
4
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> P e. NN ) |
| 47 |
5
|
nnnn0d |
|- ( ph -> M e. NN0 ) |
| 48 |
47
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> M e. NN0 ) |
| 49 |
|
etransclem6 |
|- ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) = ( y e. RR |-> ( ( y ^ ( P - 1 ) ) x. prod_ h e. ( 1 ... M ) ( ( y - h ) ^ P ) ) ) |
| 50 |
|
etransclem6 |
|- ( y e. RR |-> ( ( y ^ ( P - 1 ) ) x. prod_ h e. ( 1 ... M ) ( ( y - h ) ^ P ) ) ) = ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ k e. ( 1 ... M ) ( ( x - k ) ^ P ) ) ) |
| 51 |
6 49 50
|
3eqtri |
|- F = ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ k e. ( 1 ... M ) ( ( x - k ) ^ P ) ) ) |
| 52 |
|
0red |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> 0 e. RR ) |
| 53 |
21
|
zred |
|- ( j e. ( 0 ... M ) -> j e. RR ) |
| 54 |
53
|
adantl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> j e. RR ) |
| 55 |
41 45 46 48 51 52 54
|
etransclem18 |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) e. L^1 ) |
| 56 |
39 55
|
itgcl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x e. CC ) |
| 57 |
25 56
|
mulcld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) e. CC ) |
| 58 |
12 57
|
fsumcl |
|- ( ph -> sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) e. CC ) |
| 59 |
|
nnm1nn0 |
|- ( P e. NN -> ( P - 1 ) e. NN0 ) |
| 60 |
4 59
|
syl |
|- ( ph -> ( P - 1 ) e. NN0 ) |
| 61 |
60
|
faccld |
|- ( ph -> ( ! ` ( P - 1 ) ) e. NN ) |
| 62 |
61
|
nncnd |
|- ( ph -> ( ! ` ( P - 1 ) ) e. CC ) |
| 63 |
61
|
nnne0d |
|- ( ph -> ( ! ` ( P - 1 ) ) =/= 0 ) |
| 64 |
58 62 63
|
absdivd |
|- ( ph -> ( abs ` ( sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) / ( ! ` ( P - 1 ) ) ) ) = ( ( abs ` sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) / ( abs ` ( ! ` ( P - 1 ) ) ) ) ) |
| 65 |
61
|
nnred |
|- ( ph -> ( ! ` ( P - 1 ) ) e. RR ) |
| 66 |
61
|
nnnn0d |
|- ( ph -> ( ! ` ( P - 1 ) ) e. NN0 ) |
| 67 |
66
|
nn0ge0d |
|- ( ph -> 0 <_ ( ! ` ( P - 1 ) ) ) |
| 68 |
65 67
|
absidd |
|- ( ph -> ( abs ` ( ! ` ( P - 1 ) ) ) = ( ! ` ( P - 1 ) ) ) |
| 69 |
68
|
oveq2d |
|- ( ph -> ( ( abs ` sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) / ( abs ` ( ! ` ( P - 1 ) ) ) ) = ( ( abs ` sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) / ( ! ` ( P - 1 ) ) ) ) |
| 70 |
11 64 69
|
3eqtrd |
|- ( ph -> ( abs ` K ) = ( ( abs ` sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) / ( ! ` ( P - 1 ) ) ) ) |
| 71 |
2 58
|
eqeltrid |
|- ( ph -> L e. CC ) |
| 72 |
71 62 63
|
divcld |
|- ( ph -> ( L / ( ! ` ( P - 1 ) ) ) e. CC ) |
| 73 |
3 72
|
eqeltrid |
|- ( ph -> K e. CC ) |
| 74 |
73
|
abscld |
|- ( ph -> ( abs ` K ) e. RR ) |
| 75 |
70 74
|
eqeltrrd |
|- ( ph -> ( ( abs ` sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) / ( ! ` ( P - 1 ) ) ) e. RR ) |
| 76 |
5
|
nnred |
|- ( ph -> M e. RR ) |
| 77 |
4
|
nnnn0d |
|- ( ph -> P e. NN0 ) |
| 78 |
76 77
|
reexpcld |
|- ( ph -> ( M ^ P ) e. RR ) |
| 79 |
|
peano2nn0 |
|- ( M e. NN0 -> ( M + 1 ) e. NN0 ) |
| 80 |
47 79
|
syl |
|- ( ph -> ( M + 1 ) e. NN0 ) |
| 81 |
78 80
|
reexpcld |
|- ( ph -> ( ( M ^ P ) ^ ( M + 1 ) ) e. RR ) |
| 82 |
81
|
recnd |
|- ( ph -> ( ( M ^ P ) ^ ( M + 1 ) ) e. CC ) |
| 83 |
5
|
nncnd |
|- ( ph -> M e. CC ) |
| 84 |
82 83
|
mulcomd |
|- ( ph -> ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) = ( M x. ( ( M ^ P ) ^ ( M + 1 ) ) ) ) |
| 85 |
4
|
nncnd |
|- ( ph -> P e. CC ) |
| 86 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 87 |
85 86
|
npcand |
|- ( ph -> ( ( P - 1 ) + 1 ) = P ) |
| 88 |
87
|
eqcomd |
|- ( ph -> P = ( ( P - 1 ) + 1 ) ) |
| 89 |
88
|
oveq2d |
|- ( ph -> ( ( M ^ ( M + 1 ) ) ^ P ) = ( ( M ^ ( M + 1 ) ) ^ ( ( P - 1 ) + 1 ) ) ) |
| 90 |
80
|
nn0cnd |
|- ( ph -> ( M + 1 ) e. CC ) |
| 91 |
90 85
|
mulcomd |
|- ( ph -> ( ( M + 1 ) x. P ) = ( P x. ( M + 1 ) ) ) |
| 92 |
91
|
oveq2d |
|- ( ph -> ( M ^ ( ( M + 1 ) x. P ) ) = ( M ^ ( P x. ( M + 1 ) ) ) ) |
| 93 |
83 77 80
|
expmuld |
|- ( ph -> ( M ^ ( ( M + 1 ) x. P ) ) = ( ( M ^ ( M + 1 ) ) ^ P ) ) |
| 94 |
83 80 77
|
expmuld |
|- ( ph -> ( M ^ ( P x. ( M + 1 ) ) ) = ( ( M ^ P ) ^ ( M + 1 ) ) ) |
| 95 |
92 93 94
|
3eqtr3d |
|- ( ph -> ( ( M ^ ( M + 1 ) ) ^ P ) = ( ( M ^ P ) ^ ( M + 1 ) ) ) |
| 96 |
76 80
|
reexpcld |
|- ( ph -> ( M ^ ( M + 1 ) ) e. RR ) |
| 97 |
96
|
recnd |
|- ( ph -> ( M ^ ( M + 1 ) ) e. CC ) |
| 98 |
97 60
|
expp1d |
|- ( ph -> ( ( M ^ ( M + 1 ) ) ^ ( ( P - 1 ) + 1 ) ) = ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) x. ( M ^ ( M + 1 ) ) ) ) |
| 99 |
89 95 98
|
3eqtr3d |
|- ( ph -> ( ( M ^ P ) ^ ( M + 1 ) ) = ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) x. ( M ^ ( M + 1 ) ) ) ) |
| 100 |
99
|
oveq2d |
|- ( ph -> ( M x. ( ( M ^ P ) ^ ( M + 1 ) ) ) = ( M x. ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) x. ( M ^ ( M + 1 ) ) ) ) ) |
| 101 |
97 60
|
expcld |
|- ( ph -> ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) e. CC ) |
| 102 |
83 101 97
|
mul12d |
|- ( ph -> ( M x. ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) x. ( M ^ ( M + 1 ) ) ) ) = ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) ) |
| 103 |
83 97
|
mulcld |
|- ( ph -> ( M x. ( M ^ ( M + 1 ) ) ) e. CC ) |
| 104 |
101 103
|
mulcomd |
|- ( ph -> ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) = ( ( M x. ( M ^ ( M + 1 ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) ) |
| 105 |
102 104
|
eqtrd |
|- ( ph -> ( M x. ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) x. ( M ^ ( M + 1 ) ) ) ) = ( ( M x. ( M ^ ( M + 1 ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) ) |
| 106 |
84 100 105
|
3eqtrd |
|- ( ph -> ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) = ( ( M x. ( M ^ ( M + 1 ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) ) |
| 107 |
106
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) = ( ( M x. ( M ^ ( M + 1 ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) ) |
| 108 |
107
|
oveq2d |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) = ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( M x. ( M ^ ( M + 1 ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) ) ) |
| 109 |
25
|
abscld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) e. RR ) |
| 110 |
109
|
recnd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) e. CC ) |
| 111 |
103
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( M x. ( M ^ ( M + 1 ) ) ) e. CC ) |
| 112 |
101
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) e. CC ) |
| 113 |
110 111 112
|
mulassd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) = ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( M x. ( M ^ ( M + 1 ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) ) ) |
| 114 |
108 113
|
eqtr4d |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) = ( ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) ) |
| 115 |
114
|
sumeq2dv |
|- ( ph -> sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) = sum_ j e. ( 0 ... M ) ( ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) ) |
| 116 |
110 111
|
mulcld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) e. CC ) |
| 117 |
12 101 116
|
fsummulc1 |
|- ( ph -> ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) = sum_ j e. ( 0 ... M ) ( ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) ) |
| 118 |
115 117
|
eqtr4d |
|- ( ph -> sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) = ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) ) |
| 119 |
118
|
oveq1d |
|- ( ph -> ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) / ( ! ` ( P - 1 ) ) ) = ( ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) / ( ! ` ( P - 1 ) ) ) ) |
| 120 |
12 116
|
fsumcl |
|- ( ph -> sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) e. CC ) |
| 121 |
120 101 62 63
|
divassd |
|- ( ph -> ( ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) / ( ! ` ( P - 1 ) ) ) = ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) / ( ! ` ( P - 1 ) ) ) ) ) |
| 122 |
119 121
|
eqtrd |
|- ( ph -> ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) / ( ! ` ( P - 1 ) ) ) = ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) / ( ! ` ( P - 1 ) ) ) ) ) |
| 123 |
81
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( M ^ P ) ^ ( M + 1 ) ) e. RR ) |
| 124 |
76
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> M e. RR ) |
| 125 |
123 124
|
remulcld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) e. RR ) |
| 126 |
109 125
|
remulcld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) e. RR ) |
| 127 |
12 126
|
fsumrecl |
|- ( ph -> sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) e. RR ) |
| 128 |
127 61
|
nndivred |
|- ( ph -> ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) / ( ! ` ( P - 1 ) ) ) e. RR ) |
| 129 |
122 128
|
eqeltrrd |
|- ( ph -> ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) / ( ! ` ( P - 1 ) ) ) ) e. RR ) |
| 130 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 131 |
58
|
abscld |
|- ( ph -> ( abs ` sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) e. RR ) |
| 132 |
61
|
nnrpd |
|- ( ph -> ( ! ` ( P - 1 ) ) e. RR+ ) |
| 133 |
57
|
abscld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( abs ` ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) e. RR ) |
| 134 |
12 133
|
fsumrecl |
|- ( ph -> sum_ j e. ( 0 ... M ) ( abs ` ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) e. RR ) |
| 135 |
12 57
|
fsumabs |
|- ( ph -> ( abs ` sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) <_ sum_ j e. ( 0 ... M ) ( abs ` ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) ) |
| 136 |
81
|
ad2antrr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( ( M ^ P ) ^ ( M + 1 ) ) e. RR ) |
| 137 |
|
ioombl |
|- ( 0 (,) j ) e. dom vol |
| 138 |
137
|
a1i |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( 0 (,) j ) e. dom vol ) |
| 139 |
|
0red |
|- ( j e. ( 0 ... M ) -> 0 e. RR ) |
| 140 |
|
elfzle1 |
|- ( j e. ( 0 ... M ) -> 0 <_ j ) |
| 141 |
|
volioo |
|- ( ( 0 e. RR /\ j e. RR /\ 0 <_ j ) -> ( vol ` ( 0 (,) j ) ) = ( j - 0 ) ) |
| 142 |
139 53 140 141
|
syl3anc |
|- ( j e. ( 0 ... M ) -> ( vol ` ( 0 (,) j ) ) = ( j - 0 ) ) |
| 143 |
53 139
|
resubcld |
|- ( j e. ( 0 ... M ) -> ( j - 0 ) e. RR ) |
| 144 |
142 143
|
eqeltrd |
|- ( j e. ( 0 ... M ) -> ( vol ` ( 0 (,) j ) ) e. RR ) |
| 145 |
144
|
adantl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( vol ` ( 0 (,) j ) ) e. RR ) |
| 146 |
82
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( M ^ P ) ^ ( M + 1 ) ) e. CC ) |
| 147 |
|
iblconstmpt |
|- ( ( ( 0 (,) j ) e. dom vol /\ ( vol ` ( 0 (,) j ) ) e. RR /\ ( ( M ^ P ) ^ ( M + 1 ) ) e. CC ) -> ( x e. ( 0 (,) j ) |-> ( ( M ^ P ) ^ ( M + 1 ) ) ) e. L^1 ) |
| 148 |
138 145 146 147
|
syl3anc |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 (,) j ) |-> ( ( M ^ P ) ^ ( M + 1 ) ) ) e. L^1 ) |
| 149 |
136 148
|
itgrecl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x e. RR ) |
| 150 |
109 149
|
remulcld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x ) e. RR ) |
| 151 |
12 150
|
fsumrecl |
|- ( ph -> sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x ) e. RR ) |
| 152 |
25 56
|
absmuld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( abs ` ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) = ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( abs ` S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) ) |
| 153 |
56
|
abscld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( abs ` S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) e. RR ) |
| 154 |
25
|
absge0d |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> 0 <_ ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) ) |
| 155 |
39
|
abscld |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( abs ` ( ( _e ^c -u x ) x. ( F ` x ) ) ) e. RR ) |
| 156 |
39 55
|
iblabs |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 (,) j ) |-> ( abs ` ( ( _e ^c -u x ) x. ( F ` x ) ) ) ) e. L^1 ) |
| 157 |
155 156
|
itgrecl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> S. ( 0 (,) j ) ( abs ` ( ( _e ^c -u x ) x. ( F ` x ) ) ) _d x e. RR ) |
| 158 |
39 55
|
itgabs |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( abs ` S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) <_ S. ( 0 (,) j ) ( abs ` ( ( _e ^c -u x ) x. ( F ` x ) ) ) _d x ) |
| 159 |
31 38
|
absmuld |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( abs ` ( ( _e ^c -u x ) x. ( F ` x ) ) ) = ( ( abs ` ( _e ^c -u x ) ) x. ( abs ` ( F ` x ) ) ) ) |
| 160 |
31
|
abscld |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( abs ` ( _e ^c -u x ) ) e. RR ) |
| 161 |
|
1red |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> 1 e. RR ) |
| 162 |
38
|
abscld |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( abs ` ( F ` x ) ) e. RR ) |
| 163 |
31
|
absge0d |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> 0 <_ ( abs ` ( _e ^c -u x ) ) ) |
| 164 |
38
|
absge0d |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> 0 <_ ( abs ` ( F ` x ) ) ) |
| 165 |
18
|
a1i |
|- ( x e. ( 0 (,) j ) -> _e e. RR ) |
| 166 |
|
0re |
|- 0 e. RR |
| 167 |
|
epos |
|- 0 < _e |
| 168 |
166 18 167
|
ltleii |
|- 0 <_ _e |
| 169 |
168
|
a1i |
|- ( x e. ( 0 (,) j ) -> 0 <_ _e ) |
| 170 |
27
|
renegcld |
|- ( x e. ( 0 (,) j ) -> -u x e. RR ) |
| 171 |
165 169 170
|
recxpcld |
|- ( x e. ( 0 (,) j ) -> ( _e ^c -u x ) e. RR ) |
| 172 |
165 169 170
|
cxpge0d |
|- ( x e. ( 0 (,) j ) -> 0 <_ ( _e ^c -u x ) ) |
| 173 |
171 172
|
absidd |
|- ( x e. ( 0 (,) j ) -> ( abs ` ( _e ^c -u x ) ) = ( _e ^c -u x ) ) |
| 174 |
173
|
adantl |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> ( abs ` ( _e ^c -u x ) ) = ( _e ^c -u x ) ) |
| 175 |
171
|
adantl |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> ( _e ^c -u x ) e. RR ) |
| 176 |
|
1red |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> 1 e. RR ) |
| 177 |
|
0xr |
|- 0 e. RR* |
| 178 |
177
|
a1i |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> 0 e. RR* ) |
| 179 |
53
|
rexrd |
|- ( j e. ( 0 ... M ) -> j e. RR* ) |
| 180 |
179
|
adantr |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> j e. RR* ) |
| 181 |
|
simpr |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> x e. ( 0 (,) j ) ) |
| 182 |
|
ioogtlb |
|- ( ( 0 e. RR* /\ j e. RR* /\ x e. ( 0 (,) j ) ) -> 0 < x ) |
| 183 |
178 180 181 182
|
syl3anc |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> 0 < x ) |
| 184 |
27
|
adantl |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> x e. RR ) |
| 185 |
184
|
lt0neg2d |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> ( 0 < x <-> -u x < 0 ) ) |
| 186 |
183 185
|
mpbid |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> -u x < 0 ) |
| 187 |
18
|
a1i |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> _e e. RR ) |
| 188 |
|
1lt2 |
|- 1 < 2 |
| 189 |
|
egt2lt3 |
|- ( 2 < _e /\ _e < 3 ) |
| 190 |
189
|
simpli |
|- 2 < _e |
| 191 |
|
1re |
|- 1 e. RR |
| 192 |
|
2re |
|- 2 e. RR |
| 193 |
191 192 18
|
lttri |
|- ( ( 1 < 2 /\ 2 < _e ) -> 1 < _e ) |
| 194 |
188 190 193
|
mp2an |
|- 1 < _e |
| 195 |
194
|
a1i |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> 1 < _e ) |
| 196 |
170
|
adantl |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> -u x e. RR ) |
| 197 |
|
0red |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> 0 e. RR ) |
| 198 |
187 195 196 197
|
cxpltd |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> ( -u x < 0 <-> ( _e ^c -u x ) < ( _e ^c 0 ) ) ) |
| 199 |
186 198
|
mpbid |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> ( _e ^c -u x ) < ( _e ^c 0 ) ) |
| 200 |
|
cxp0 |
|- ( _e e. CC -> ( _e ^c 0 ) = 1 ) |
| 201 |
19 200
|
mp1i |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> ( _e ^c 0 ) = 1 ) |
| 202 |
199 201
|
breqtrd |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> ( _e ^c -u x ) < 1 ) |
| 203 |
175 176 202
|
ltled |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> ( _e ^c -u x ) <_ 1 ) |
| 204 |
174 203
|
eqbrtrd |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> ( abs ` ( _e ^c -u x ) ) <_ 1 ) |
| 205 |
204
|
adantll |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( abs ` ( _e ^c -u x ) ) <_ 1 ) |
| 206 |
32
|
a1i |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> RR C_ CC ) |
| 207 |
4
|
ad2antrr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> P e. NN ) |
| 208 |
47
|
ad2antrr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> M e. NN0 ) |
| 209 |
6 49
|
eqtri |
|- F = ( y e. RR |-> ( ( y ^ ( P - 1 ) ) x. prod_ h e. ( 1 ... M ) ( ( y - h ) ^ P ) ) ) |
| 210 |
27
|
adantl |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> x e. RR ) |
| 211 |
206 207 208 209 210
|
etransclem13 |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( F ` x ) = prod_ h e. ( 0 ... M ) ( ( x - h ) ^ if ( h = 0 , ( P - 1 ) , P ) ) ) |
| 212 |
211
|
fveq2d |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( abs ` ( F ` x ) ) = ( abs ` prod_ h e. ( 0 ... M ) ( ( x - h ) ^ if ( h = 0 , ( P - 1 ) , P ) ) ) ) |
| 213 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 214 |
27
|
adantr |
|- ( ( x e. ( 0 (,) j ) /\ h e. NN0 ) -> x e. RR ) |
| 215 |
|
nn0re |
|- ( h e. NN0 -> h e. RR ) |
| 216 |
215
|
adantl |
|- ( ( x e. ( 0 (,) j ) /\ h e. NN0 ) -> h e. RR ) |
| 217 |
214 216
|
resubcld |
|- ( ( x e. ( 0 (,) j ) /\ h e. NN0 ) -> ( x - h ) e. RR ) |
| 218 |
217
|
adantll |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. NN0 ) -> ( x - h ) e. RR ) |
| 219 |
60 77
|
ifcld |
|- ( ph -> if ( h = 0 , ( P - 1 ) , P ) e. NN0 ) |
| 220 |
219
|
ad3antrrr |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. NN0 ) -> if ( h = 0 , ( P - 1 ) , P ) e. NN0 ) |
| 221 |
218 220
|
reexpcld |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. NN0 ) -> ( ( x - h ) ^ if ( h = 0 , ( P - 1 ) , P ) ) e. RR ) |
| 222 |
221
|
recnd |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. NN0 ) -> ( ( x - h ) ^ if ( h = 0 , ( P - 1 ) , P ) ) e. CC ) |
| 223 |
213 208 222
|
fprodabs |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( abs ` prod_ h e. ( 0 ... M ) ( ( x - h ) ^ if ( h = 0 , ( P - 1 ) , P ) ) ) = prod_ h e. ( 0 ... M ) ( abs ` ( ( x - h ) ^ if ( h = 0 , ( P - 1 ) , P ) ) ) ) |
| 224 |
|
elfznn0 |
|- ( h e. ( 0 ... M ) -> h e. NN0 ) |
| 225 |
28
|
adantr |
|- ( ( x e. ( 0 (,) j ) /\ h e. NN0 ) -> x e. CC ) |
| 226 |
|
nn0cn |
|- ( h e. NN0 -> h e. CC ) |
| 227 |
226
|
adantl |
|- ( ( x e. ( 0 (,) j ) /\ h e. NN0 ) -> h e. CC ) |
| 228 |
225 227
|
subcld |
|- ( ( x e. ( 0 (,) j ) /\ h e. NN0 ) -> ( x - h ) e. CC ) |
| 229 |
228
|
adantll |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. NN0 ) -> ( x - h ) e. CC ) |
| 230 |
224 229
|
sylan2 |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( x - h ) e. CC ) |
| 231 |
219
|
ad3antrrr |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> if ( h = 0 , ( P - 1 ) , P ) e. NN0 ) |
| 232 |
230 231
|
absexpd |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( abs ` ( ( x - h ) ^ if ( h = 0 , ( P - 1 ) , P ) ) ) = ( ( abs ` ( x - h ) ) ^ if ( h = 0 , ( P - 1 ) , P ) ) ) |
| 233 |
232
|
prodeq2dv |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> prod_ h e. ( 0 ... M ) ( abs ` ( ( x - h ) ^ if ( h = 0 , ( P - 1 ) , P ) ) ) = prod_ h e. ( 0 ... M ) ( ( abs ` ( x - h ) ) ^ if ( h = 0 , ( P - 1 ) , P ) ) ) |
| 234 |
212 223 233
|
3eqtrd |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( abs ` ( F ` x ) ) = prod_ h e. ( 0 ... M ) ( ( abs ` ( x - h ) ) ^ if ( h = 0 , ( P - 1 ) , P ) ) ) |
| 235 |
|
nfv |
|- F/ h ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) |
| 236 |
|
fzfid |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( 0 ... M ) e. Fin ) |
| 237 |
224 228
|
sylan2 |
|- ( ( x e. ( 0 (,) j ) /\ h e. ( 0 ... M ) ) -> ( x - h ) e. CC ) |
| 238 |
237
|
abscld |
|- ( ( x e. ( 0 (,) j ) /\ h e. ( 0 ... M ) ) -> ( abs ` ( x - h ) ) e. RR ) |
| 239 |
238
|
adantll |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( abs ` ( x - h ) ) e. RR ) |
| 240 |
239 231
|
reexpcld |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( ( abs ` ( x - h ) ) ^ if ( h = 0 , ( P - 1 ) , P ) ) e. RR ) |
| 241 |
237
|
absge0d |
|- ( ( x e. ( 0 (,) j ) /\ h e. ( 0 ... M ) ) -> 0 <_ ( abs ` ( x - h ) ) ) |
| 242 |
241
|
adantll |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> 0 <_ ( abs ` ( x - h ) ) ) |
| 243 |
239 231 242
|
expge0d |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> 0 <_ ( ( abs ` ( x - h ) ) ^ if ( h = 0 , ( P - 1 ) , P ) ) ) |
| 244 |
78
|
ad3antrrr |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( M ^ P ) e. RR ) |
| 245 |
76
|
ad3antrrr |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> M e. RR ) |
| 246 |
245 231
|
reexpcld |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( M ^ if ( h = 0 , ( P - 1 ) , P ) ) e. RR ) |
| 247 |
224 218
|
sylan2 |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( x - h ) e. RR ) |
| 248 |
28
|
adantr |
|- ( ( x e. ( 0 (,) j ) /\ h e. ( 0 ... M ) ) -> x e. CC ) |
| 249 |
224 227
|
sylan2 |
|- ( ( x e. ( 0 (,) j ) /\ h e. ( 0 ... M ) ) -> h e. CC ) |
| 250 |
248 249
|
negsubdi2d |
|- ( ( x e. ( 0 (,) j ) /\ h e. ( 0 ... M ) ) -> -u ( x - h ) = ( h - x ) ) |
| 251 |
250
|
adantll |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> -u ( x - h ) = ( h - x ) ) |
| 252 |
224
|
adantl |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> h e. NN0 ) |
| 253 |
252
|
nn0red |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> h e. RR ) |
| 254 |
|
0red |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> 0 e. RR ) |
| 255 |
210
|
adantr |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> x e. RR ) |
| 256 |
|
elfzle2 |
|- ( h e. ( 0 ... M ) -> h <_ M ) |
| 257 |
256
|
adantl |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> h <_ M ) |
| 258 |
197 184 183
|
ltled |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> 0 <_ x ) |
| 259 |
258
|
adantll |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> 0 <_ x ) |
| 260 |
259
|
adantr |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> 0 <_ x ) |
| 261 |
253 254 245 255 257 260
|
le2subd |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( h - x ) <_ ( M - 0 ) ) |
| 262 |
83
|
subid1d |
|- ( ph -> ( M - 0 ) = M ) |
| 263 |
262
|
ad3antrrr |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( M - 0 ) = M ) |
| 264 |
261 263
|
breqtrd |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( h - x ) <_ M ) |
| 265 |
251 264
|
eqbrtrd |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> -u ( x - h ) <_ M ) |
| 266 |
247 245 265
|
lenegcon1d |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> -u M <_ ( x - h ) ) |
| 267 |
|
elfzel2 |
|- ( j e. ( 0 ... M ) -> M e. ZZ ) |
| 268 |
267
|
zred |
|- ( j e. ( 0 ... M ) -> M e. RR ) |
| 269 |
268
|
adantr |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> M e. RR ) |
| 270 |
53
|
adantr |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> j e. RR ) |
| 271 |
|
iooltub |
|- ( ( 0 e. RR* /\ j e. RR* /\ x e. ( 0 (,) j ) ) -> x < j ) |
| 272 |
178 180 181 271
|
syl3anc |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> x < j ) |
| 273 |
|
elfzle2 |
|- ( j e. ( 0 ... M ) -> j <_ M ) |
| 274 |
273
|
adantr |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> j <_ M ) |
| 275 |
184 270 269 272 274
|
ltletrd |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> x < M ) |
| 276 |
184 269 275
|
ltled |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> x <_ M ) |
| 277 |
276
|
adantll |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> x <_ M ) |
| 278 |
277
|
adantr |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> x <_ M ) |
| 279 |
252
|
nn0ge0d |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> 0 <_ h ) |
| 280 |
255 254 245 253 278 279
|
le2subd |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( x - h ) <_ ( M - 0 ) ) |
| 281 |
280 263
|
breqtrd |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( x - h ) <_ M ) |
| 282 |
247 245
|
absled |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( ( abs ` ( x - h ) ) <_ M <-> ( -u M <_ ( x - h ) /\ ( x - h ) <_ M ) ) ) |
| 283 |
266 281 282
|
mpbir2and |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( abs ` ( x - h ) ) <_ M ) |
| 284 |
|
leexp1a |
|- ( ( ( ( abs ` ( x - h ) ) e. RR /\ M e. RR /\ if ( h = 0 , ( P - 1 ) , P ) e. NN0 ) /\ ( 0 <_ ( abs ` ( x - h ) ) /\ ( abs ` ( x - h ) ) <_ M ) ) -> ( ( abs ` ( x - h ) ) ^ if ( h = 0 , ( P - 1 ) , P ) ) <_ ( M ^ if ( h = 0 , ( P - 1 ) , P ) ) ) |
| 285 |
239 245 231 242 283 284
|
syl32anc |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( ( abs ` ( x - h ) ) ^ if ( h = 0 , ( P - 1 ) , P ) ) <_ ( M ^ if ( h = 0 , ( P - 1 ) , P ) ) ) |
| 286 |
5
|
nnge1d |
|- ( ph -> 1 <_ M ) |
| 287 |
286
|
ad3antrrr |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> 1 <_ M ) |
| 288 |
219
|
nn0zd |
|- ( ph -> if ( h = 0 , ( P - 1 ) , P ) e. ZZ ) |
| 289 |
77
|
nn0zd |
|- ( ph -> P e. ZZ ) |
| 290 |
|
iftrue |
|- ( h = 0 -> if ( h = 0 , ( P - 1 ) , P ) = ( P - 1 ) ) |
| 291 |
290
|
adantl |
|- ( ( ph /\ h = 0 ) -> if ( h = 0 , ( P - 1 ) , P ) = ( P - 1 ) ) |
| 292 |
4
|
nnred |
|- ( ph -> P e. RR ) |
| 293 |
292
|
lem1d |
|- ( ph -> ( P - 1 ) <_ P ) |
| 294 |
293
|
adantr |
|- ( ( ph /\ h = 0 ) -> ( P - 1 ) <_ P ) |
| 295 |
291 294
|
eqbrtrd |
|- ( ( ph /\ h = 0 ) -> if ( h = 0 , ( P - 1 ) , P ) <_ P ) |
| 296 |
|
iffalse |
|- ( -. h = 0 -> if ( h = 0 , ( P - 1 ) , P ) = P ) |
| 297 |
296
|
adantl |
|- ( ( ph /\ -. h = 0 ) -> if ( h = 0 , ( P - 1 ) , P ) = P ) |
| 298 |
292
|
leidd |
|- ( ph -> P <_ P ) |
| 299 |
298
|
adantr |
|- ( ( ph /\ -. h = 0 ) -> P <_ P ) |
| 300 |
297 299
|
eqbrtrd |
|- ( ( ph /\ -. h = 0 ) -> if ( h = 0 , ( P - 1 ) , P ) <_ P ) |
| 301 |
295 300
|
pm2.61dan |
|- ( ph -> if ( h = 0 , ( P - 1 ) , P ) <_ P ) |
| 302 |
|
eluz2 |
|- ( P e. ( ZZ>= ` if ( h = 0 , ( P - 1 ) , P ) ) <-> ( if ( h = 0 , ( P - 1 ) , P ) e. ZZ /\ P e. ZZ /\ if ( h = 0 , ( P - 1 ) , P ) <_ P ) ) |
| 303 |
288 289 301 302
|
syl3anbrc |
|- ( ph -> P e. ( ZZ>= ` if ( h = 0 , ( P - 1 ) , P ) ) ) |
| 304 |
303
|
ad3antrrr |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> P e. ( ZZ>= ` if ( h = 0 , ( P - 1 ) , P ) ) ) |
| 305 |
245 287 304
|
leexp2ad |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( M ^ if ( h = 0 , ( P - 1 ) , P ) ) <_ ( M ^ P ) ) |
| 306 |
240 246 244 285 305
|
letrd |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( ( abs ` ( x - h ) ) ^ if ( h = 0 , ( P - 1 ) , P ) ) <_ ( M ^ P ) ) |
| 307 |
235 236 240 243 244 306
|
fprodle |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> prod_ h e. ( 0 ... M ) ( ( abs ` ( x - h ) ) ^ if ( h = 0 , ( P - 1 ) , P ) ) <_ prod_ h e. ( 0 ... M ) ( M ^ P ) ) |
| 308 |
78
|
recnd |
|- ( ph -> ( M ^ P ) e. CC ) |
| 309 |
|
fprodconst |
|- ( ( ( 0 ... M ) e. Fin /\ ( M ^ P ) e. CC ) -> prod_ h e. ( 0 ... M ) ( M ^ P ) = ( ( M ^ P ) ^ ( # ` ( 0 ... M ) ) ) ) |
| 310 |
12 308 309
|
syl2anc |
|- ( ph -> prod_ h e. ( 0 ... M ) ( M ^ P ) = ( ( M ^ P ) ^ ( # ` ( 0 ... M ) ) ) ) |
| 311 |
|
hashfz0 |
|- ( M e. NN0 -> ( # ` ( 0 ... M ) ) = ( M + 1 ) ) |
| 312 |
47 311
|
syl |
|- ( ph -> ( # ` ( 0 ... M ) ) = ( M + 1 ) ) |
| 313 |
312
|
oveq2d |
|- ( ph -> ( ( M ^ P ) ^ ( # ` ( 0 ... M ) ) ) = ( ( M ^ P ) ^ ( M + 1 ) ) ) |
| 314 |
310 313
|
eqtrd |
|- ( ph -> prod_ h e. ( 0 ... M ) ( M ^ P ) = ( ( M ^ P ) ^ ( M + 1 ) ) ) |
| 315 |
314
|
ad2antrr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> prod_ h e. ( 0 ... M ) ( M ^ P ) = ( ( M ^ P ) ^ ( M + 1 ) ) ) |
| 316 |
307 315
|
breqtrd |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> prod_ h e. ( 0 ... M ) ( ( abs ` ( x - h ) ) ^ if ( h = 0 , ( P - 1 ) , P ) ) <_ ( ( M ^ P ) ^ ( M + 1 ) ) ) |
| 317 |
234 316
|
eqbrtrd |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( abs ` ( F ` x ) ) <_ ( ( M ^ P ) ^ ( M + 1 ) ) ) |
| 318 |
160 161 162 136 163 164 205 317
|
lemul12ad |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( ( abs ` ( _e ^c -u x ) ) x. ( abs ` ( F ` x ) ) ) <_ ( 1 x. ( ( M ^ P ) ^ ( M + 1 ) ) ) ) |
| 319 |
82
|
mullidd |
|- ( ph -> ( 1 x. ( ( M ^ P ) ^ ( M + 1 ) ) ) = ( ( M ^ P ) ^ ( M + 1 ) ) ) |
| 320 |
319
|
ad2antrr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( 1 x. ( ( M ^ P ) ^ ( M + 1 ) ) ) = ( ( M ^ P ) ^ ( M + 1 ) ) ) |
| 321 |
318 320
|
breqtrd |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( ( abs ` ( _e ^c -u x ) ) x. ( abs ` ( F ` x ) ) ) <_ ( ( M ^ P ) ^ ( M + 1 ) ) ) |
| 322 |
159 321
|
eqbrtrd |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( abs ` ( ( _e ^c -u x ) x. ( F ` x ) ) ) <_ ( ( M ^ P ) ^ ( M + 1 ) ) ) |
| 323 |
156 148 155 136 322
|
itgle |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> S. ( 0 (,) j ) ( abs ` ( ( _e ^c -u x ) x. ( F ` x ) ) ) _d x <_ S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x ) |
| 324 |
153 157 149 158 323
|
letrd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( abs ` S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) <_ S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x ) |
| 325 |
153 149 109 154 324
|
lemul2ad |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( abs ` S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) <_ ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x ) ) |
| 326 |
152 325
|
eqbrtrd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( abs ` ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) <_ ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x ) ) |
| 327 |
12 133 150 326
|
fsumle |
|- ( ph -> sum_ j e. ( 0 ... M ) ( abs ` ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) <_ sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x ) ) |
| 328 |
|
itgconst |
|- ( ( ( 0 (,) j ) e. dom vol /\ ( vol ` ( 0 (,) j ) ) e. RR /\ ( ( M ^ P ) ^ ( M + 1 ) ) e. CC ) -> S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x = ( ( ( M ^ P ) ^ ( M + 1 ) ) x. ( vol ` ( 0 (,) j ) ) ) ) |
| 329 |
138 145 146 328
|
syl3anc |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x = ( ( ( M ^ P ) ^ ( M + 1 ) ) x. ( vol ` ( 0 (,) j ) ) ) ) |
| 330 |
47
|
nn0ge0d |
|- ( ph -> 0 <_ M ) |
| 331 |
76 77 330
|
expge0d |
|- ( ph -> 0 <_ ( M ^ P ) ) |
| 332 |
78 80 331
|
expge0d |
|- ( ph -> 0 <_ ( ( M ^ P ) ^ ( M + 1 ) ) ) |
| 333 |
332
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> 0 <_ ( ( M ^ P ) ^ ( M + 1 ) ) ) |
| 334 |
22
|
subid1d |
|- ( j e. ( 0 ... M ) -> ( j - 0 ) = j ) |
| 335 |
142 334
|
eqtrd |
|- ( j e. ( 0 ... M ) -> ( vol ` ( 0 (,) j ) ) = j ) |
| 336 |
335 273
|
eqbrtrd |
|- ( j e. ( 0 ... M ) -> ( vol ` ( 0 (,) j ) ) <_ M ) |
| 337 |
336
|
adantl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( vol ` ( 0 (,) j ) ) <_ M ) |
| 338 |
145 124 123 333 337
|
lemul2ad |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( M ^ P ) ^ ( M + 1 ) ) x. ( vol ` ( 0 (,) j ) ) ) <_ ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) |
| 339 |
329 338
|
eqbrtrd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x <_ ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) |
| 340 |
149 125 109 154 339
|
lemul2ad |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x ) <_ ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) ) |
| 341 |
12 150 126 340
|
fsumle |
|- ( ph -> sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x ) <_ sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) ) |
| 342 |
134 151 127 327 341
|
letrd |
|- ( ph -> sum_ j e. ( 0 ... M ) ( abs ` ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) <_ sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) ) |
| 343 |
131 134 127 135 342
|
letrd |
|- ( ph -> ( abs ` sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) <_ sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) ) |
| 344 |
131 127 132 343
|
lediv1dd |
|- ( ph -> ( ( abs ` sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) / ( ! ` ( P - 1 ) ) ) <_ ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) / ( ! ` ( P - 1 ) ) ) ) |
| 345 |
344 122
|
breqtrd |
|- ( ph -> ( ( abs ` sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) / ( ! ` ( P - 1 ) ) ) <_ ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) / ( ! ` ( P - 1 ) ) ) ) ) |
| 346 |
75 129 130 345 7
|
lelttrd |
|- ( ph -> ( ( abs ` sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) / ( ! ` ( P - 1 ) ) ) < 1 ) |
| 347 |
70 346
|
eqbrtrd |
|- ( ph -> ( abs ` K ) < 1 ) |