Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem23.a |
|- ( ph -> A : NN0 --> ZZ ) |
2 |
|
etransclem23.l |
|- L = sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) |
3 |
|
etransclem23.k |
|- K = ( L / ( ! ` ( P - 1 ) ) ) |
4 |
|
etransclem23.p |
|- ( ph -> P e. NN ) |
5 |
|
etransclem23.m |
|- ( ph -> M e. NN ) |
6 |
|
etransclem23.f |
|- F = ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) |
7 |
|
etransclem23.lt1 |
|- ( ph -> ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) / ( ! ` ( P - 1 ) ) ) ) < 1 ) |
8 |
2
|
oveq1i |
|- ( L / ( ! ` ( P - 1 ) ) ) = ( sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) / ( ! ` ( P - 1 ) ) ) |
9 |
3 8
|
eqtri |
|- K = ( sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) / ( ! ` ( P - 1 ) ) ) |
10 |
9
|
fveq2i |
|- ( abs ` K ) = ( abs ` ( sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) / ( ! ` ( P - 1 ) ) ) ) |
11 |
10
|
a1i |
|- ( ph -> ( abs ` K ) = ( abs ` ( sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) / ( ! ` ( P - 1 ) ) ) ) ) |
12 |
|
fzfid |
|- ( ph -> ( 0 ... M ) e. Fin ) |
13 |
1
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> A : NN0 --> ZZ ) |
14 |
|
elfznn0 |
|- ( j e. ( 0 ... M ) -> j e. NN0 ) |
15 |
14
|
adantl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> j e. NN0 ) |
16 |
13 15
|
ffvelrnd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( A ` j ) e. ZZ ) |
17 |
16
|
zcnd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( A ` j ) e. CC ) |
18 |
|
ere |
|- _e e. RR |
19 |
18
|
recni |
|- _e e. CC |
20 |
19
|
a1i |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> _e e. CC ) |
21 |
|
elfzelz |
|- ( j e. ( 0 ... M ) -> j e. ZZ ) |
22 |
21
|
zcnd |
|- ( j e. ( 0 ... M ) -> j e. CC ) |
23 |
22
|
adantl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> j e. CC ) |
24 |
20 23
|
cxpcld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( _e ^c j ) e. CC ) |
25 |
17 24
|
mulcld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( A ` j ) x. ( _e ^c j ) ) e. CC ) |
26 |
19
|
a1i |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> _e e. CC ) |
27 |
|
elioore |
|- ( x e. ( 0 (,) j ) -> x e. RR ) |
28 |
27
|
recnd |
|- ( x e. ( 0 (,) j ) -> x e. CC ) |
29 |
28
|
adantl |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> x e. CC ) |
30 |
29
|
negcld |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> -u x e. CC ) |
31 |
26 30
|
cxpcld |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( _e ^c -u x ) e. CC ) |
32 |
|
ax-resscn |
|- RR C_ CC |
33 |
32
|
a1i |
|- ( ph -> RR C_ CC ) |
34 |
33 4 6
|
etransclem8 |
|- ( ph -> F : RR --> CC ) |
35 |
34
|
adantr |
|- ( ( ph /\ x e. ( 0 (,) j ) ) -> F : RR --> CC ) |
36 |
27
|
adantl |
|- ( ( ph /\ x e. ( 0 (,) j ) ) -> x e. RR ) |
37 |
35 36
|
ffvelrnd |
|- ( ( ph /\ x e. ( 0 (,) j ) ) -> ( F ` x ) e. CC ) |
38 |
37
|
adantlr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( F ` x ) e. CC ) |
39 |
31 38
|
mulcld |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( ( _e ^c -u x ) x. ( F ` x ) ) e. CC ) |
40 |
|
reelprrecn |
|- RR e. { RR , CC } |
41 |
40
|
a1i |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> RR e. { RR , CC } ) |
42 |
|
reopn |
|- RR e. ( topGen ` ran (,) ) |
43 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
44 |
43
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
45 |
42 44
|
eleqtri |
|- RR e. ( ( TopOpen ` CCfld ) |`t RR ) |
46 |
45
|
a1i |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> RR e. ( ( TopOpen ` CCfld ) |`t RR ) ) |
47 |
4
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> P e. NN ) |
48 |
5
|
nnnn0d |
|- ( ph -> M e. NN0 ) |
49 |
48
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> M e. NN0 ) |
50 |
|
etransclem6 |
|- ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) = ( y e. RR |-> ( ( y ^ ( P - 1 ) ) x. prod_ h e. ( 1 ... M ) ( ( y - h ) ^ P ) ) ) |
51 |
|
etransclem6 |
|- ( y e. RR |-> ( ( y ^ ( P - 1 ) ) x. prod_ h e. ( 1 ... M ) ( ( y - h ) ^ P ) ) ) = ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ k e. ( 1 ... M ) ( ( x - k ) ^ P ) ) ) |
52 |
6 50 51
|
3eqtri |
|- F = ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ k e. ( 1 ... M ) ( ( x - k ) ^ P ) ) ) |
53 |
|
0red |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> 0 e. RR ) |
54 |
21
|
zred |
|- ( j e. ( 0 ... M ) -> j e. RR ) |
55 |
54
|
adantl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> j e. RR ) |
56 |
41 46 47 49 52 53 55
|
etransclem18 |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 (,) j ) |-> ( ( _e ^c -u x ) x. ( F ` x ) ) ) e. L^1 ) |
57 |
39 56
|
itgcl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x e. CC ) |
58 |
25 57
|
mulcld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) e. CC ) |
59 |
12 58
|
fsumcl |
|- ( ph -> sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) e. CC ) |
60 |
|
nnm1nn0 |
|- ( P e. NN -> ( P - 1 ) e. NN0 ) |
61 |
4 60
|
syl |
|- ( ph -> ( P - 1 ) e. NN0 ) |
62 |
61
|
faccld |
|- ( ph -> ( ! ` ( P - 1 ) ) e. NN ) |
63 |
62
|
nncnd |
|- ( ph -> ( ! ` ( P - 1 ) ) e. CC ) |
64 |
62
|
nnne0d |
|- ( ph -> ( ! ` ( P - 1 ) ) =/= 0 ) |
65 |
59 63 64
|
absdivd |
|- ( ph -> ( abs ` ( sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) / ( ! ` ( P - 1 ) ) ) ) = ( ( abs ` sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) / ( abs ` ( ! ` ( P - 1 ) ) ) ) ) |
66 |
62
|
nnred |
|- ( ph -> ( ! ` ( P - 1 ) ) e. RR ) |
67 |
62
|
nnnn0d |
|- ( ph -> ( ! ` ( P - 1 ) ) e. NN0 ) |
68 |
67
|
nn0ge0d |
|- ( ph -> 0 <_ ( ! ` ( P - 1 ) ) ) |
69 |
66 68
|
absidd |
|- ( ph -> ( abs ` ( ! ` ( P - 1 ) ) ) = ( ! ` ( P - 1 ) ) ) |
70 |
69
|
oveq2d |
|- ( ph -> ( ( abs ` sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) / ( abs ` ( ! ` ( P - 1 ) ) ) ) = ( ( abs ` sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) / ( ! ` ( P - 1 ) ) ) ) |
71 |
11 65 70
|
3eqtrd |
|- ( ph -> ( abs ` K ) = ( ( abs ` sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) / ( ! ` ( P - 1 ) ) ) ) |
72 |
2 59
|
eqeltrid |
|- ( ph -> L e. CC ) |
73 |
72 63 64
|
divcld |
|- ( ph -> ( L / ( ! ` ( P - 1 ) ) ) e. CC ) |
74 |
3 73
|
eqeltrid |
|- ( ph -> K e. CC ) |
75 |
74
|
abscld |
|- ( ph -> ( abs ` K ) e. RR ) |
76 |
71 75
|
eqeltrrd |
|- ( ph -> ( ( abs ` sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) / ( ! ` ( P - 1 ) ) ) e. RR ) |
77 |
5
|
nnred |
|- ( ph -> M e. RR ) |
78 |
4
|
nnnn0d |
|- ( ph -> P e. NN0 ) |
79 |
77 78
|
reexpcld |
|- ( ph -> ( M ^ P ) e. RR ) |
80 |
|
peano2nn0 |
|- ( M e. NN0 -> ( M + 1 ) e. NN0 ) |
81 |
48 80
|
syl |
|- ( ph -> ( M + 1 ) e. NN0 ) |
82 |
79 81
|
reexpcld |
|- ( ph -> ( ( M ^ P ) ^ ( M + 1 ) ) e. RR ) |
83 |
82
|
recnd |
|- ( ph -> ( ( M ^ P ) ^ ( M + 1 ) ) e. CC ) |
84 |
5
|
nncnd |
|- ( ph -> M e. CC ) |
85 |
83 84
|
mulcomd |
|- ( ph -> ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) = ( M x. ( ( M ^ P ) ^ ( M + 1 ) ) ) ) |
86 |
4
|
nncnd |
|- ( ph -> P e. CC ) |
87 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
88 |
86 87
|
npcand |
|- ( ph -> ( ( P - 1 ) + 1 ) = P ) |
89 |
88
|
eqcomd |
|- ( ph -> P = ( ( P - 1 ) + 1 ) ) |
90 |
89
|
oveq2d |
|- ( ph -> ( ( M ^ ( M + 1 ) ) ^ P ) = ( ( M ^ ( M + 1 ) ) ^ ( ( P - 1 ) + 1 ) ) ) |
91 |
81
|
nn0cnd |
|- ( ph -> ( M + 1 ) e. CC ) |
92 |
91 86
|
mulcomd |
|- ( ph -> ( ( M + 1 ) x. P ) = ( P x. ( M + 1 ) ) ) |
93 |
92
|
oveq2d |
|- ( ph -> ( M ^ ( ( M + 1 ) x. P ) ) = ( M ^ ( P x. ( M + 1 ) ) ) ) |
94 |
84 78 81
|
expmuld |
|- ( ph -> ( M ^ ( ( M + 1 ) x. P ) ) = ( ( M ^ ( M + 1 ) ) ^ P ) ) |
95 |
84 81 78
|
expmuld |
|- ( ph -> ( M ^ ( P x. ( M + 1 ) ) ) = ( ( M ^ P ) ^ ( M + 1 ) ) ) |
96 |
93 94 95
|
3eqtr3d |
|- ( ph -> ( ( M ^ ( M + 1 ) ) ^ P ) = ( ( M ^ P ) ^ ( M + 1 ) ) ) |
97 |
77 81
|
reexpcld |
|- ( ph -> ( M ^ ( M + 1 ) ) e. RR ) |
98 |
97
|
recnd |
|- ( ph -> ( M ^ ( M + 1 ) ) e. CC ) |
99 |
98 61
|
expp1d |
|- ( ph -> ( ( M ^ ( M + 1 ) ) ^ ( ( P - 1 ) + 1 ) ) = ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) x. ( M ^ ( M + 1 ) ) ) ) |
100 |
90 96 99
|
3eqtr3d |
|- ( ph -> ( ( M ^ P ) ^ ( M + 1 ) ) = ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) x. ( M ^ ( M + 1 ) ) ) ) |
101 |
100
|
oveq2d |
|- ( ph -> ( M x. ( ( M ^ P ) ^ ( M + 1 ) ) ) = ( M x. ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) x. ( M ^ ( M + 1 ) ) ) ) ) |
102 |
98 61
|
expcld |
|- ( ph -> ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) e. CC ) |
103 |
84 102 98
|
mul12d |
|- ( ph -> ( M x. ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) x. ( M ^ ( M + 1 ) ) ) ) = ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) ) |
104 |
84 98
|
mulcld |
|- ( ph -> ( M x. ( M ^ ( M + 1 ) ) ) e. CC ) |
105 |
102 104
|
mulcomd |
|- ( ph -> ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) = ( ( M x. ( M ^ ( M + 1 ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) ) |
106 |
103 105
|
eqtrd |
|- ( ph -> ( M x. ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) x. ( M ^ ( M + 1 ) ) ) ) = ( ( M x. ( M ^ ( M + 1 ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) ) |
107 |
85 101 106
|
3eqtrd |
|- ( ph -> ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) = ( ( M x. ( M ^ ( M + 1 ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) ) |
108 |
107
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) = ( ( M x. ( M ^ ( M + 1 ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) ) |
109 |
108
|
oveq2d |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) = ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( M x. ( M ^ ( M + 1 ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) ) ) |
110 |
25
|
abscld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) e. RR ) |
111 |
110
|
recnd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) e. CC ) |
112 |
104
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( M x. ( M ^ ( M + 1 ) ) ) e. CC ) |
113 |
102
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) e. CC ) |
114 |
111 112 113
|
mulassd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) = ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( M x. ( M ^ ( M + 1 ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) ) ) |
115 |
109 114
|
eqtr4d |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) = ( ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) ) |
116 |
115
|
sumeq2dv |
|- ( ph -> sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) = sum_ j e. ( 0 ... M ) ( ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) ) |
117 |
111 112
|
mulcld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) e. CC ) |
118 |
12 102 117
|
fsummulc1 |
|- ( ph -> ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) = sum_ j e. ( 0 ... M ) ( ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) ) |
119 |
116 118
|
eqtr4d |
|- ( ph -> sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) = ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) ) |
120 |
119
|
oveq1d |
|- ( ph -> ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) / ( ! ` ( P - 1 ) ) ) = ( ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) / ( ! ` ( P - 1 ) ) ) ) |
121 |
12 117
|
fsumcl |
|- ( ph -> sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) e. CC ) |
122 |
121 102 63 64
|
divassd |
|- ( ph -> ( ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) ) / ( ! ` ( P - 1 ) ) ) = ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) / ( ! ` ( P - 1 ) ) ) ) ) |
123 |
120 122
|
eqtrd |
|- ( ph -> ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) / ( ! ` ( P - 1 ) ) ) = ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) / ( ! ` ( P - 1 ) ) ) ) ) |
124 |
82
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( M ^ P ) ^ ( M + 1 ) ) e. RR ) |
125 |
77
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> M e. RR ) |
126 |
124 125
|
remulcld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) e. RR ) |
127 |
110 126
|
remulcld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) e. RR ) |
128 |
12 127
|
fsumrecl |
|- ( ph -> sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) e. RR ) |
129 |
128 62
|
nndivred |
|- ( ph -> ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) / ( ! ` ( P - 1 ) ) ) e. RR ) |
130 |
123 129
|
eqeltrrd |
|- ( ph -> ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) / ( ! ` ( P - 1 ) ) ) ) e. RR ) |
131 |
|
1red |
|- ( ph -> 1 e. RR ) |
132 |
59
|
abscld |
|- ( ph -> ( abs ` sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) e. RR ) |
133 |
62
|
nnrpd |
|- ( ph -> ( ! ` ( P - 1 ) ) e. RR+ ) |
134 |
58
|
abscld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( abs ` ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) e. RR ) |
135 |
12 134
|
fsumrecl |
|- ( ph -> sum_ j e. ( 0 ... M ) ( abs ` ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) e. RR ) |
136 |
12 58
|
fsumabs |
|- ( ph -> ( abs ` sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) <_ sum_ j e. ( 0 ... M ) ( abs ` ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) ) |
137 |
82
|
ad2antrr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( ( M ^ P ) ^ ( M + 1 ) ) e. RR ) |
138 |
|
ioombl |
|- ( 0 (,) j ) e. dom vol |
139 |
138
|
a1i |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( 0 (,) j ) e. dom vol ) |
140 |
|
0red |
|- ( j e. ( 0 ... M ) -> 0 e. RR ) |
141 |
|
elfzle1 |
|- ( j e. ( 0 ... M ) -> 0 <_ j ) |
142 |
|
volioo |
|- ( ( 0 e. RR /\ j e. RR /\ 0 <_ j ) -> ( vol ` ( 0 (,) j ) ) = ( j - 0 ) ) |
143 |
140 54 141 142
|
syl3anc |
|- ( j e. ( 0 ... M ) -> ( vol ` ( 0 (,) j ) ) = ( j - 0 ) ) |
144 |
54 140
|
resubcld |
|- ( j e. ( 0 ... M ) -> ( j - 0 ) e. RR ) |
145 |
143 144
|
eqeltrd |
|- ( j e. ( 0 ... M ) -> ( vol ` ( 0 (,) j ) ) e. RR ) |
146 |
145
|
adantl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( vol ` ( 0 (,) j ) ) e. RR ) |
147 |
83
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( M ^ P ) ^ ( M + 1 ) ) e. CC ) |
148 |
|
iblconstmpt |
|- ( ( ( 0 (,) j ) e. dom vol /\ ( vol ` ( 0 (,) j ) ) e. RR /\ ( ( M ^ P ) ^ ( M + 1 ) ) e. CC ) -> ( x e. ( 0 (,) j ) |-> ( ( M ^ P ) ^ ( M + 1 ) ) ) e. L^1 ) |
149 |
139 146 147 148
|
syl3anc |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 (,) j ) |-> ( ( M ^ P ) ^ ( M + 1 ) ) ) e. L^1 ) |
150 |
137 149
|
itgrecl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x e. RR ) |
151 |
110 150
|
remulcld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x ) e. RR ) |
152 |
12 151
|
fsumrecl |
|- ( ph -> sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x ) e. RR ) |
153 |
25 57
|
absmuld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( abs ` ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) = ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( abs ` S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) ) |
154 |
57
|
abscld |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( abs ` S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) e. RR ) |
155 |
25
|
absge0d |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> 0 <_ ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) ) |
156 |
39
|
abscld |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( abs ` ( ( _e ^c -u x ) x. ( F ` x ) ) ) e. RR ) |
157 |
39 56
|
iblabs |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. ( 0 (,) j ) |-> ( abs ` ( ( _e ^c -u x ) x. ( F ` x ) ) ) ) e. L^1 ) |
158 |
156 157
|
itgrecl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> S. ( 0 (,) j ) ( abs ` ( ( _e ^c -u x ) x. ( F ` x ) ) ) _d x e. RR ) |
159 |
39 56
|
itgabs |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( abs ` S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) <_ S. ( 0 (,) j ) ( abs ` ( ( _e ^c -u x ) x. ( F ` x ) ) ) _d x ) |
160 |
31 38
|
absmuld |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( abs ` ( ( _e ^c -u x ) x. ( F ` x ) ) ) = ( ( abs ` ( _e ^c -u x ) ) x. ( abs ` ( F ` x ) ) ) ) |
161 |
31
|
abscld |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( abs ` ( _e ^c -u x ) ) e. RR ) |
162 |
|
1red |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> 1 e. RR ) |
163 |
38
|
abscld |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( abs ` ( F ` x ) ) e. RR ) |
164 |
31
|
absge0d |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> 0 <_ ( abs ` ( _e ^c -u x ) ) ) |
165 |
38
|
absge0d |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> 0 <_ ( abs ` ( F ` x ) ) ) |
166 |
18
|
a1i |
|- ( x e. ( 0 (,) j ) -> _e e. RR ) |
167 |
|
0re |
|- 0 e. RR |
168 |
|
epos |
|- 0 < _e |
169 |
167 18 168
|
ltleii |
|- 0 <_ _e |
170 |
169
|
a1i |
|- ( x e. ( 0 (,) j ) -> 0 <_ _e ) |
171 |
27
|
renegcld |
|- ( x e. ( 0 (,) j ) -> -u x e. RR ) |
172 |
166 170 171
|
recxpcld |
|- ( x e. ( 0 (,) j ) -> ( _e ^c -u x ) e. RR ) |
173 |
166 170 171
|
cxpge0d |
|- ( x e. ( 0 (,) j ) -> 0 <_ ( _e ^c -u x ) ) |
174 |
172 173
|
absidd |
|- ( x e. ( 0 (,) j ) -> ( abs ` ( _e ^c -u x ) ) = ( _e ^c -u x ) ) |
175 |
174
|
adantl |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> ( abs ` ( _e ^c -u x ) ) = ( _e ^c -u x ) ) |
176 |
172
|
adantl |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> ( _e ^c -u x ) e. RR ) |
177 |
|
1red |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> 1 e. RR ) |
178 |
|
0xr |
|- 0 e. RR* |
179 |
178
|
a1i |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> 0 e. RR* ) |
180 |
54
|
rexrd |
|- ( j e. ( 0 ... M ) -> j e. RR* ) |
181 |
180
|
adantr |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> j e. RR* ) |
182 |
|
simpr |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> x e. ( 0 (,) j ) ) |
183 |
|
ioogtlb |
|- ( ( 0 e. RR* /\ j e. RR* /\ x e. ( 0 (,) j ) ) -> 0 < x ) |
184 |
179 181 182 183
|
syl3anc |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> 0 < x ) |
185 |
27
|
adantl |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> x e. RR ) |
186 |
185
|
lt0neg2d |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> ( 0 < x <-> -u x < 0 ) ) |
187 |
184 186
|
mpbid |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> -u x < 0 ) |
188 |
18
|
a1i |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> _e e. RR ) |
189 |
|
1lt2 |
|- 1 < 2 |
190 |
|
egt2lt3 |
|- ( 2 < _e /\ _e < 3 ) |
191 |
190
|
simpli |
|- 2 < _e |
192 |
|
1re |
|- 1 e. RR |
193 |
|
2re |
|- 2 e. RR |
194 |
192 193 18
|
lttri |
|- ( ( 1 < 2 /\ 2 < _e ) -> 1 < _e ) |
195 |
189 191 194
|
mp2an |
|- 1 < _e |
196 |
195
|
a1i |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> 1 < _e ) |
197 |
171
|
adantl |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> -u x e. RR ) |
198 |
|
0red |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> 0 e. RR ) |
199 |
188 196 197 198
|
cxpltd |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> ( -u x < 0 <-> ( _e ^c -u x ) < ( _e ^c 0 ) ) ) |
200 |
187 199
|
mpbid |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> ( _e ^c -u x ) < ( _e ^c 0 ) ) |
201 |
|
cxp0 |
|- ( _e e. CC -> ( _e ^c 0 ) = 1 ) |
202 |
19 201
|
mp1i |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> ( _e ^c 0 ) = 1 ) |
203 |
200 202
|
breqtrd |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> ( _e ^c -u x ) < 1 ) |
204 |
176 177 203
|
ltled |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> ( _e ^c -u x ) <_ 1 ) |
205 |
175 204
|
eqbrtrd |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> ( abs ` ( _e ^c -u x ) ) <_ 1 ) |
206 |
205
|
adantll |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( abs ` ( _e ^c -u x ) ) <_ 1 ) |
207 |
32
|
a1i |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> RR C_ CC ) |
208 |
4
|
ad2antrr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> P e. NN ) |
209 |
48
|
ad2antrr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> M e. NN0 ) |
210 |
6 50
|
eqtri |
|- F = ( y e. RR |-> ( ( y ^ ( P - 1 ) ) x. prod_ h e. ( 1 ... M ) ( ( y - h ) ^ P ) ) ) |
211 |
27
|
adantl |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> x e. RR ) |
212 |
207 208 209 210 211
|
etransclem13 |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( F ` x ) = prod_ h e. ( 0 ... M ) ( ( x - h ) ^ if ( h = 0 , ( P - 1 ) , P ) ) ) |
213 |
212
|
fveq2d |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( abs ` ( F ` x ) ) = ( abs ` prod_ h e. ( 0 ... M ) ( ( x - h ) ^ if ( h = 0 , ( P - 1 ) , P ) ) ) ) |
214 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
215 |
27
|
adantr |
|- ( ( x e. ( 0 (,) j ) /\ h e. NN0 ) -> x e. RR ) |
216 |
|
nn0re |
|- ( h e. NN0 -> h e. RR ) |
217 |
216
|
adantl |
|- ( ( x e. ( 0 (,) j ) /\ h e. NN0 ) -> h e. RR ) |
218 |
215 217
|
resubcld |
|- ( ( x e. ( 0 (,) j ) /\ h e. NN0 ) -> ( x - h ) e. RR ) |
219 |
218
|
adantll |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. NN0 ) -> ( x - h ) e. RR ) |
220 |
61 78
|
ifcld |
|- ( ph -> if ( h = 0 , ( P - 1 ) , P ) e. NN0 ) |
221 |
220
|
ad3antrrr |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. NN0 ) -> if ( h = 0 , ( P - 1 ) , P ) e. NN0 ) |
222 |
219 221
|
reexpcld |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. NN0 ) -> ( ( x - h ) ^ if ( h = 0 , ( P - 1 ) , P ) ) e. RR ) |
223 |
222
|
recnd |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. NN0 ) -> ( ( x - h ) ^ if ( h = 0 , ( P - 1 ) , P ) ) e. CC ) |
224 |
214 209 223
|
fprodabs |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( abs ` prod_ h e. ( 0 ... M ) ( ( x - h ) ^ if ( h = 0 , ( P - 1 ) , P ) ) ) = prod_ h e. ( 0 ... M ) ( abs ` ( ( x - h ) ^ if ( h = 0 , ( P - 1 ) , P ) ) ) ) |
225 |
|
elfznn0 |
|- ( h e. ( 0 ... M ) -> h e. NN0 ) |
226 |
28
|
adantr |
|- ( ( x e. ( 0 (,) j ) /\ h e. NN0 ) -> x e. CC ) |
227 |
|
nn0cn |
|- ( h e. NN0 -> h e. CC ) |
228 |
227
|
adantl |
|- ( ( x e. ( 0 (,) j ) /\ h e. NN0 ) -> h e. CC ) |
229 |
226 228
|
subcld |
|- ( ( x e. ( 0 (,) j ) /\ h e. NN0 ) -> ( x - h ) e. CC ) |
230 |
229
|
adantll |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. NN0 ) -> ( x - h ) e. CC ) |
231 |
225 230
|
sylan2 |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( x - h ) e. CC ) |
232 |
220
|
ad3antrrr |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> if ( h = 0 , ( P - 1 ) , P ) e. NN0 ) |
233 |
231 232
|
absexpd |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( abs ` ( ( x - h ) ^ if ( h = 0 , ( P - 1 ) , P ) ) ) = ( ( abs ` ( x - h ) ) ^ if ( h = 0 , ( P - 1 ) , P ) ) ) |
234 |
233
|
prodeq2dv |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> prod_ h e. ( 0 ... M ) ( abs ` ( ( x - h ) ^ if ( h = 0 , ( P - 1 ) , P ) ) ) = prod_ h e. ( 0 ... M ) ( ( abs ` ( x - h ) ) ^ if ( h = 0 , ( P - 1 ) , P ) ) ) |
235 |
213 224 234
|
3eqtrd |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( abs ` ( F ` x ) ) = prod_ h e. ( 0 ... M ) ( ( abs ` ( x - h ) ) ^ if ( h = 0 , ( P - 1 ) , P ) ) ) |
236 |
|
nfv |
|- F/ h ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) |
237 |
|
fzfid |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( 0 ... M ) e. Fin ) |
238 |
225 229
|
sylan2 |
|- ( ( x e. ( 0 (,) j ) /\ h e. ( 0 ... M ) ) -> ( x - h ) e. CC ) |
239 |
238
|
abscld |
|- ( ( x e. ( 0 (,) j ) /\ h e. ( 0 ... M ) ) -> ( abs ` ( x - h ) ) e. RR ) |
240 |
239
|
adantll |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( abs ` ( x - h ) ) e. RR ) |
241 |
240 232
|
reexpcld |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( ( abs ` ( x - h ) ) ^ if ( h = 0 , ( P - 1 ) , P ) ) e. RR ) |
242 |
238
|
absge0d |
|- ( ( x e. ( 0 (,) j ) /\ h e. ( 0 ... M ) ) -> 0 <_ ( abs ` ( x - h ) ) ) |
243 |
242
|
adantll |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> 0 <_ ( abs ` ( x - h ) ) ) |
244 |
240 232 243
|
expge0d |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> 0 <_ ( ( abs ` ( x - h ) ) ^ if ( h = 0 , ( P - 1 ) , P ) ) ) |
245 |
79
|
ad3antrrr |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( M ^ P ) e. RR ) |
246 |
77
|
ad3antrrr |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> M e. RR ) |
247 |
246 232
|
reexpcld |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( M ^ if ( h = 0 , ( P - 1 ) , P ) ) e. RR ) |
248 |
225 219
|
sylan2 |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( x - h ) e. RR ) |
249 |
28
|
adantr |
|- ( ( x e. ( 0 (,) j ) /\ h e. ( 0 ... M ) ) -> x e. CC ) |
250 |
225 228
|
sylan2 |
|- ( ( x e. ( 0 (,) j ) /\ h e. ( 0 ... M ) ) -> h e. CC ) |
251 |
249 250
|
negsubdi2d |
|- ( ( x e. ( 0 (,) j ) /\ h e. ( 0 ... M ) ) -> -u ( x - h ) = ( h - x ) ) |
252 |
251
|
adantll |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> -u ( x - h ) = ( h - x ) ) |
253 |
225
|
adantl |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> h e. NN0 ) |
254 |
253
|
nn0red |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> h e. RR ) |
255 |
|
0red |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> 0 e. RR ) |
256 |
211
|
adantr |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> x e. RR ) |
257 |
|
elfzle2 |
|- ( h e. ( 0 ... M ) -> h <_ M ) |
258 |
257
|
adantl |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> h <_ M ) |
259 |
198 185 184
|
ltled |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> 0 <_ x ) |
260 |
259
|
adantll |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> 0 <_ x ) |
261 |
260
|
adantr |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> 0 <_ x ) |
262 |
254 255 246 256 258 261
|
le2subd |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( h - x ) <_ ( M - 0 ) ) |
263 |
84
|
subid1d |
|- ( ph -> ( M - 0 ) = M ) |
264 |
263
|
ad3antrrr |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( M - 0 ) = M ) |
265 |
262 264
|
breqtrd |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( h - x ) <_ M ) |
266 |
252 265
|
eqbrtrd |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> -u ( x - h ) <_ M ) |
267 |
248 246 266
|
lenegcon1d |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> -u M <_ ( x - h ) ) |
268 |
|
elfzel2 |
|- ( j e. ( 0 ... M ) -> M e. ZZ ) |
269 |
268
|
zred |
|- ( j e. ( 0 ... M ) -> M e. RR ) |
270 |
269
|
adantr |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> M e. RR ) |
271 |
54
|
adantr |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> j e. RR ) |
272 |
|
iooltub |
|- ( ( 0 e. RR* /\ j e. RR* /\ x e. ( 0 (,) j ) ) -> x < j ) |
273 |
179 181 182 272
|
syl3anc |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> x < j ) |
274 |
|
elfzle2 |
|- ( j e. ( 0 ... M ) -> j <_ M ) |
275 |
274
|
adantr |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> j <_ M ) |
276 |
185 271 270 273 275
|
ltletrd |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> x < M ) |
277 |
185 270 276
|
ltled |
|- ( ( j e. ( 0 ... M ) /\ x e. ( 0 (,) j ) ) -> x <_ M ) |
278 |
277
|
adantll |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> x <_ M ) |
279 |
278
|
adantr |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> x <_ M ) |
280 |
253
|
nn0ge0d |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> 0 <_ h ) |
281 |
256 255 246 254 279 280
|
le2subd |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( x - h ) <_ ( M - 0 ) ) |
282 |
281 264
|
breqtrd |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( x - h ) <_ M ) |
283 |
248 246
|
absled |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( ( abs ` ( x - h ) ) <_ M <-> ( -u M <_ ( x - h ) /\ ( x - h ) <_ M ) ) ) |
284 |
267 282 283
|
mpbir2and |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( abs ` ( x - h ) ) <_ M ) |
285 |
|
leexp1a |
|- ( ( ( ( abs ` ( x - h ) ) e. RR /\ M e. RR /\ if ( h = 0 , ( P - 1 ) , P ) e. NN0 ) /\ ( 0 <_ ( abs ` ( x - h ) ) /\ ( abs ` ( x - h ) ) <_ M ) ) -> ( ( abs ` ( x - h ) ) ^ if ( h = 0 , ( P - 1 ) , P ) ) <_ ( M ^ if ( h = 0 , ( P - 1 ) , P ) ) ) |
286 |
240 246 232 243 284 285
|
syl32anc |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( ( abs ` ( x - h ) ) ^ if ( h = 0 , ( P - 1 ) , P ) ) <_ ( M ^ if ( h = 0 , ( P - 1 ) , P ) ) ) |
287 |
5
|
nnge1d |
|- ( ph -> 1 <_ M ) |
288 |
287
|
ad3antrrr |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> 1 <_ M ) |
289 |
220
|
nn0zd |
|- ( ph -> if ( h = 0 , ( P - 1 ) , P ) e. ZZ ) |
290 |
78
|
nn0zd |
|- ( ph -> P e. ZZ ) |
291 |
|
iftrue |
|- ( h = 0 -> if ( h = 0 , ( P - 1 ) , P ) = ( P - 1 ) ) |
292 |
291
|
adantl |
|- ( ( ph /\ h = 0 ) -> if ( h = 0 , ( P - 1 ) , P ) = ( P - 1 ) ) |
293 |
4
|
nnred |
|- ( ph -> P e. RR ) |
294 |
293
|
lem1d |
|- ( ph -> ( P - 1 ) <_ P ) |
295 |
294
|
adantr |
|- ( ( ph /\ h = 0 ) -> ( P - 1 ) <_ P ) |
296 |
292 295
|
eqbrtrd |
|- ( ( ph /\ h = 0 ) -> if ( h = 0 , ( P - 1 ) , P ) <_ P ) |
297 |
|
iffalse |
|- ( -. h = 0 -> if ( h = 0 , ( P - 1 ) , P ) = P ) |
298 |
297
|
adantl |
|- ( ( ph /\ -. h = 0 ) -> if ( h = 0 , ( P - 1 ) , P ) = P ) |
299 |
293
|
leidd |
|- ( ph -> P <_ P ) |
300 |
299
|
adantr |
|- ( ( ph /\ -. h = 0 ) -> P <_ P ) |
301 |
298 300
|
eqbrtrd |
|- ( ( ph /\ -. h = 0 ) -> if ( h = 0 , ( P - 1 ) , P ) <_ P ) |
302 |
296 301
|
pm2.61dan |
|- ( ph -> if ( h = 0 , ( P - 1 ) , P ) <_ P ) |
303 |
|
eluz2 |
|- ( P e. ( ZZ>= ` if ( h = 0 , ( P - 1 ) , P ) ) <-> ( if ( h = 0 , ( P - 1 ) , P ) e. ZZ /\ P e. ZZ /\ if ( h = 0 , ( P - 1 ) , P ) <_ P ) ) |
304 |
289 290 302 303
|
syl3anbrc |
|- ( ph -> P e. ( ZZ>= ` if ( h = 0 , ( P - 1 ) , P ) ) ) |
305 |
304
|
ad3antrrr |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> P e. ( ZZ>= ` if ( h = 0 , ( P - 1 ) , P ) ) ) |
306 |
246 288 305
|
leexp2ad |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( M ^ if ( h = 0 , ( P - 1 ) , P ) ) <_ ( M ^ P ) ) |
307 |
241 247 245 286 306
|
letrd |
|- ( ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) /\ h e. ( 0 ... M ) ) -> ( ( abs ` ( x - h ) ) ^ if ( h = 0 , ( P - 1 ) , P ) ) <_ ( M ^ P ) ) |
308 |
236 237 241 244 245 307
|
fprodle |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> prod_ h e. ( 0 ... M ) ( ( abs ` ( x - h ) ) ^ if ( h = 0 , ( P - 1 ) , P ) ) <_ prod_ h e. ( 0 ... M ) ( M ^ P ) ) |
309 |
79
|
recnd |
|- ( ph -> ( M ^ P ) e. CC ) |
310 |
|
fprodconst |
|- ( ( ( 0 ... M ) e. Fin /\ ( M ^ P ) e. CC ) -> prod_ h e. ( 0 ... M ) ( M ^ P ) = ( ( M ^ P ) ^ ( # ` ( 0 ... M ) ) ) ) |
311 |
12 309 310
|
syl2anc |
|- ( ph -> prod_ h e. ( 0 ... M ) ( M ^ P ) = ( ( M ^ P ) ^ ( # ` ( 0 ... M ) ) ) ) |
312 |
|
hashfz0 |
|- ( M e. NN0 -> ( # ` ( 0 ... M ) ) = ( M + 1 ) ) |
313 |
48 312
|
syl |
|- ( ph -> ( # ` ( 0 ... M ) ) = ( M + 1 ) ) |
314 |
313
|
oveq2d |
|- ( ph -> ( ( M ^ P ) ^ ( # ` ( 0 ... M ) ) ) = ( ( M ^ P ) ^ ( M + 1 ) ) ) |
315 |
311 314
|
eqtrd |
|- ( ph -> prod_ h e. ( 0 ... M ) ( M ^ P ) = ( ( M ^ P ) ^ ( M + 1 ) ) ) |
316 |
315
|
ad2antrr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> prod_ h e. ( 0 ... M ) ( M ^ P ) = ( ( M ^ P ) ^ ( M + 1 ) ) ) |
317 |
308 316
|
breqtrd |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> prod_ h e. ( 0 ... M ) ( ( abs ` ( x - h ) ) ^ if ( h = 0 , ( P - 1 ) , P ) ) <_ ( ( M ^ P ) ^ ( M + 1 ) ) ) |
318 |
235 317
|
eqbrtrd |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( abs ` ( F ` x ) ) <_ ( ( M ^ P ) ^ ( M + 1 ) ) ) |
319 |
161 162 163 137 164 165 206 318
|
lemul12ad |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( ( abs ` ( _e ^c -u x ) ) x. ( abs ` ( F ` x ) ) ) <_ ( 1 x. ( ( M ^ P ) ^ ( M + 1 ) ) ) ) |
320 |
83
|
mulid2d |
|- ( ph -> ( 1 x. ( ( M ^ P ) ^ ( M + 1 ) ) ) = ( ( M ^ P ) ^ ( M + 1 ) ) ) |
321 |
320
|
ad2antrr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( 1 x. ( ( M ^ P ) ^ ( M + 1 ) ) ) = ( ( M ^ P ) ^ ( M + 1 ) ) ) |
322 |
319 321
|
breqtrd |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( ( abs ` ( _e ^c -u x ) ) x. ( abs ` ( F ` x ) ) ) <_ ( ( M ^ P ) ^ ( M + 1 ) ) ) |
323 |
160 322
|
eqbrtrd |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. ( 0 (,) j ) ) -> ( abs ` ( ( _e ^c -u x ) x. ( F ` x ) ) ) <_ ( ( M ^ P ) ^ ( M + 1 ) ) ) |
324 |
157 149 156 137 323
|
itgle |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> S. ( 0 (,) j ) ( abs ` ( ( _e ^c -u x ) x. ( F ` x ) ) ) _d x <_ S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x ) |
325 |
154 158 150 159 324
|
letrd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( abs ` S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) <_ S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x ) |
326 |
154 150 110 155 325
|
lemul2ad |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( abs ` S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) <_ ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x ) ) |
327 |
153 326
|
eqbrtrd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( abs ` ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) <_ ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x ) ) |
328 |
12 134 151 327
|
fsumle |
|- ( ph -> sum_ j e. ( 0 ... M ) ( abs ` ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) <_ sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x ) ) |
329 |
|
itgconst |
|- ( ( ( 0 (,) j ) e. dom vol /\ ( vol ` ( 0 (,) j ) ) e. RR /\ ( ( M ^ P ) ^ ( M + 1 ) ) e. CC ) -> S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x = ( ( ( M ^ P ) ^ ( M + 1 ) ) x. ( vol ` ( 0 (,) j ) ) ) ) |
330 |
139 146 147 329
|
syl3anc |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x = ( ( ( M ^ P ) ^ ( M + 1 ) ) x. ( vol ` ( 0 (,) j ) ) ) ) |
331 |
48
|
nn0ge0d |
|- ( ph -> 0 <_ M ) |
332 |
77 78 331
|
expge0d |
|- ( ph -> 0 <_ ( M ^ P ) ) |
333 |
79 81 332
|
expge0d |
|- ( ph -> 0 <_ ( ( M ^ P ) ^ ( M + 1 ) ) ) |
334 |
333
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> 0 <_ ( ( M ^ P ) ^ ( M + 1 ) ) ) |
335 |
22
|
subid1d |
|- ( j e. ( 0 ... M ) -> ( j - 0 ) = j ) |
336 |
143 335
|
eqtrd |
|- ( j e. ( 0 ... M ) -> ( vol ` ( 0 (,) j ) ) = j ) |
337 |
336 274
|
eqbrtrd |
|- ( j e. ( 0 ... M ) -> ( vol ` ( 0 (,) j ) ) <_ M ) |
338 |
337
|
adantl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( vol ` ( 0 (,) j ) ) <_ M ) |
339 |
146 125 124 334 338
|
lemul2ad |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( M ^ P ) ^ ( M + 1 ) ) x. ( vol ` ( 0 (,) j ) ) ) <_ ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) |
340 |
330 339
|
eqbrtrd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x <_ ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) |
341 |
150 126 110 155 340
|
lemul2ad |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x ) <_ ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) ) |
342 |
12 151 127 341
|
fsumle |
|- ( ph -> sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. S. ( 0 (,) j ) ( ( M ^ P ) ^ ( M + 1 ) ) _d x ) <_ sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) ) |
343 |
135 152 128 328 342
|
letrd |
|- ( ph -> sum_ j e. ( 0 ... M ) ( abs ` ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) <_ sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) ) |
344 |
132 135 128 136 343
|
letrd |
|- ( ph -> ( abs ` sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) <_ sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) ) |
345 |
132 128 133 344
|
lediv1dd |
|- ( ph -> ( ( abs ` sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) / ( ! ` ( P - 1 ) ) ) <_ ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( ( ( M ^ P ) ^ ( M + 1 ) ) x. M ) ) / ( ! ` ( P - 1 ) ) ) ) |
346 |
345 123
|
breqtrd |
|- ( ph -> ( ( abs ` sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) / ( ! ` ( P - 1 ) ) ) <_ ( sum_ j e. ( 0 ... M ) ( ( abs ` ( ( A ` j ) x. ( _e ^c j ) ) ) x. ( M x. ( M ^ ( M + 1 ) ) ) ) x. ( ( ( M ^ ( M + 1 ) ) ^ ( P - 1 ) ) / ( ! ` ( P - 1 ) ) ) ) ) |
347 |
76 130 131 346 7
|
lelttrd |
|- ( ph -> ( ( abs ` sum_ j e. ( 0 ... M ) ( ( ( A ` j ) x. ( _e ^c j ) ) x. S. ( 0 (,) j ) ( ( _e ^c -u x ) x. ( F ` x ) ) _d x ) ) / ( ! ` ( P - 1 ) ) ) < 1 ) |
348 |
71 347
|
eqbrtrd |
|- ( ph -> ( abs ` K ) < 1 ) |