Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem24.p |
|- ( ph -> P e. NN ) |
2 |
|
etransclem24.m |
|- ( ph -> M e. NN0 ) |
3 |
|
etransclem24.i |
|- ( ph -> I e. NN0 ) |
4 |
|
etransclem24.ip |
|- ( ph -> I =/= ( P - 1 ) ) |
5 |
|
etransclem24.j |
|- ( ph -> J = 0 ) |
6 |
|
etransclem24.c |
|- C = ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } ) |
7 |
|
etransclem24.d |
|- ( ph -> D e. ( C ` I ) ) |
8 |
6 3
|
etransclem12 |
|- ( ph -> ( C ` I ) = { c e. ( ( 0 ... I ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = I } ) |
9 |
7 8
|
eleqtrd |
|- ( ph -> D e. { c e. ( ( 0 ... I ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = I } ) |
10 |
|
fveq1 |
|- ( c = D -> ( c ` j ) = ( D ` j ) ) |
11 |
10
|
sumeq2sdv |
|- ( c = D -> sum_ j e. ( 0 ... M ) ( c ` j ) = sum_ j e. ( 0 ... M ) ( D ` j ) ) |
12 |
11
|
eqeq1d |
|- ( c = D -> ( sum_ j e. ( 0 ... M ) ( c ` j ) = I <-> sum_ j e. ( 0 ... M ) ( D ` j ) = I ) ) |
13 |
12
|
elrab |
|- ( D e. { c e. ( ( 0 ... I ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = I } <-> ( D e. ( ( 0 ... I ) ^m ( 0 ... M ) ) /\ sum_ j e. ( 0 ... M ) ( D ` j ) = I ) ) |
14 |
9 13
|
sylib |
|- ( ph -> ( D e. ( ( 0 ... I ) ^m ( 0 ... M ) ) /\ sum_ j e. ( 0 ... M ) ( D ` j ) = I ) ) |
15 |
14
|
simprd |
|- ( ph -> sum_ j e. ( 0 ... M ) ( D ` j ) = I ) |
16 |
15
|
ad2antrr |
|- ( ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) /\ -. E. k e. ( 1 ... M ) ( D ` k ) e. NN ) -> sum_ j e. ( 0 ... M ) ( D ` j ) = I ) |
17 |
|
ralnex |
|- ( A. k e. ( 1 ... M ) -. ( D ` k ) e. NN <-> -. E. k e. ( 1 ... M ) ( D ` k ) e. NN ) |
18 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
19 |
2 18
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` 0 ) ) |
20 |
19
|
ad2antrr |
|- ( ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) /\ A. k e. ( 1 ... M ) -. ( D ` k ) e. NN ) -> M e. ( ZZ>= ` 0 ) ) |
21 |
|
fzsscn |
|- ( 0 ... I ) C_ CC |
22 |
|
ssrab2 |
|- { c e. ( ( 0 ... I ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = I } C_ ( ( 0 ... I ) ^m ( 0 ... M ) ) |
23 |
8 22
|
eqsstrdi |
|- ( ph -> ( C ` I ) C_ ( ( 0 ... I ) ^m ( 0 ... M ) ) ) |
24 |
23 7
|
sseldd |
|- ( ph -> D e. ( ( 0 ... I ) ^m ( 0 ... M ) ) ) |
25 |
|
elmapi |
|- ( D e. ( ( 0 ... I ) ^m ( 0 ... M ) ) -> D : ( 0 ... M ) --> ( 0 ... I ) ) |
26 |
24 25
|
syl |
|- ( ph -> D : ( 0 ... M ) --> ( 0 ... I ) ) |
27 |
26
|
ffvelrnda |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( D ` j ) e. ( 0 ... I ) ) |
28 |
21 27
|
sselid |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( D ` j ) e. CC ) |
29 |
28
|
ad4ant14 |
|- ( ( ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) /\ A. k e. ( 1 ... M ) -. ( D ` k ) e. NN ) /\ j e. ( 0 ... M ) ) -> ( D ` j ) e. CC ) |
30 |
|
fveq2 |
|- ( j = 0 -> ( D ` j ) = ( D ` 0 ) ) |
31 |
20 29 30
|
fsum1p |
|- ( ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) /\ A. k e. ( 1 ... M ) -. ( D ` k ) e. NN ) -> sum_ j e. ( 0 ... M ) ( D ` j ) = ( ( D ` 0 ) + sum_ j e. ( ( 0 + 1 ) ... M ) ( D ` j ) ) ) |
32 |
|
simplr |
|- ( ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) /\ A. k e. ( 1 ... M ) -. ( D ` k ) e. NN ) -> ( D ` 0 ) = ( P - 1 ) ) |
33 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
34 |
33
|
oveq1i |
|- ( ( 0 + 1 ) ... M ) = ( 1 ... M ) |
35 |
34
|
sumeq1i |
|- sum_ j e. ( ( 0 + 1 ) ... M ) ( D ` j ) = sum_ j e. ( 1 ... M ) ( D ` j ) |
36 |
35
|
a1i |
|- ( ( ph /\ A. k e. ( 1 ... M ) -. ( D ` k ) e. NN ) -> sum_ j e. ( ( 0 + 1 ) ... M ) ( D ` j ) = sum_ j e. ( 1 ... M ) ( D ` j ) ) |
37 |
|
fveq2 |
|- ( k = j -> ( D ` k ) = ( D ` j ) ) |
38 |
37
|
eleq1d |
|- ( k = j -> ( ( D ` k ) e. NN <-> ( D ` j ) e. NN ) ) |
39 |
38
|
notbid |
|- ( k = j -> ( -. ( D ` k ) e. NN <-> -. ( D ` j ) e. NN ) ) |
40 |
39
|
rspccva |
|- ( ( A. k e. ( 1 ... M ) -. ( D ` k ) e. NN /\ j e. ( 1 ... M ) ) -> -. ( D ` j ) e. NN ) |
41 |
40
|
adantll |
|- ( ( ( ph /\ A. k e. ( 1 ... M ) -. ( D ` k ) e. NN ) /\ j e. ( 1 ... M ) ) -> -. ( D ` j ) e. NN ) |
42 |
|
fzssnn0 |
|- ( 0 ... I ) C_ NN0 |
43 |
|
fz1ssfz0 |
|- ( 1 ... M ) C_ ( 0 ... M ) |
44 |
43
|
sseli |
|- ( j e. ( 1 ... M ) -> j e. ( 0 ... M ) ) |
45 |
44 27
|
sylan2 |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( D ` j ) e. ( 0 ... I ) ) |
46 |
42 45
|
sselid |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( D ` j ) e. NN0 ) |
47 |
|
elnn0 |
|- ( ( D ` j ) e. NN0 <-> ( ( D ` j ) e. NN \/ ( D ` j ) = 0 ) ) |
48 |
46 47
|
sylib |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( D ` j ) e. NN \/ ( D ` j ) = 0 ) ) |
49 |
48
|
adantlr |
|- ( ( ( ph /\ A. k e. ( 1 ... M ) -. ( D ` k ) e. NN ) /\ j e. ( 1 ... M ) ) -> ( ( D ` j ) e. NN \/ ( D ` j ) = 0 ) ) |
50 |
|
orel1 |
|- ( -. ( D ` j ) e. NN -> ( ( ( D ` j ) e. NN \/ ( D ` j ) = 0 ) -> ( D ` j ) = 0 ) ) |
51 |
41 49 50
|
sylc |
|- ( ( ( ph /\ A. k e. ( 1 ... M ) -. ( D ` k ) e. NN ) /\ j e. ( 1 ... M ) ) -> ( D ` j ) = 0 ) |
52 |
51
|
sumeq2dv |
|- ( ( ph /\ A. k e. ( 1 ... M ) -. ( D ` k ) e. NN ) -> sum_ j e. ( 1 ... M ) ( D ` j ) = sum_ j e. ( 1 ... M ) 0 ) |
53 |
|
fzfi |
|- ( 1 ... M ) e. Fin |
54 |
53
|
olci |
|- ( ( 1 ... M ) C_ ( ZZ>= ` A ) \/ ( 1 ... M ) e. Fin ) |
55 |
|
sumz |
|- ( ( ( 1 ... M ) C_ ( ZZ>= ` A ) \/ ( 1 ... M ) e. Fin ) -> sum_ j e. ( 1 ... M ) 0 = 0 ) |
56 |
54 55
|
mp1i |
|- ( ( ph /\ A. k e. ( 1 ... M ) -. ( D ` k ) e. NN ) -> sum_ j e. ( 1 ... M ) 0 = 0 ) |
57 |
36 52 56
|
3eqtrd |
|- ( ( ph /\ A. k e. ( 1 ... M ) -. ( D ` k ) e. NN ) -> sum_ j e. ( ( 0 + 1 ) ... M ) ( D ` j ) = 0 ) |
58 |
57
|
adantlr |
|- ( ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) /\ A. k e. ( 1 ... M ) -. ( D ` k ) e. NN ) -> sum_ j e. ( ( 0 + 1 ) ... M ) ( D ` j ) = 0 ) |
59 |
32 58
|
oveq12d |
|- ( ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) /\ A. k e. ( 1 ... M ) -. ( D ` k ) e. NN ) -> ( ( D ` 0 ) + sum_ j e. ( ( 0 + 1 ) ... M ) ( D ` j ) ) = ( ( P - 1 ) + 0 ) ) |
60 |
|
nnm1nn0 |
|- ( P e. NN -> ( P - 1 ) e. NN0 ) |
61 |
1 60
|
syl |
|- ( ph -> ( P - 1 ) e. NN0 ) |
62 |
61
|
nn0red |
|- ( ph -> ( P - 1 ) e. RR ) |
63 |
62
|
recnd |
|- ( ph -> ( P - 1 ) e. CC ) |
64 |
63
|
addid1d |
|- ( ph -> ( ( P - 1 ) + 0 ) = ( P - 1 ) ) |
65 |
64
|
ad2antrr |
|- ( ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) /\ A. k e. ( 1 ... M ) -. ( D ` k ) e. NN ) -> ( ( P - 1 ) + 0 ) = ( P - 1 ) ) |
66 |
31 59 65
|
3eqtrd |
|- ( ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) /\ A. k e. ( 1 ... M ) -. ( D ` k ) e. NN ) -> sum_ j e. ( 0 ... M ) ( D ` j ) = ( P - 1 ) ) |
67 |
4
|
necomd |
|- ( ph -> ( P - 1 ) =/= I ) |
68 |
67
|
ad2antrr |
|- ( ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) /\ A. k e. ( 1 ... M ) -. ( D ` k ) e. NN ) -> ( P - 1 ) =/= I ) |
69 |
66 68
|
eqnetrd |
|- ( ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) /\ A. k e. ( 1 ... M ) -. ( D ` k ) e. NN ) -> sum_ j e. ( 0 ... M ) ( D ` j ) =/= I ) |
70 |
69
|
neneqd |
|- ( ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) /\ A. k e. ( 1 ... M ) -. ( D ` k ) e. NN ) -> -. sum_ j e. ( 0 ... M ) ( D ` j ) = I ) |
71 |
17 70
|
sylan2br |
|- ( ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) /\ -. E. k e. ( 1 ... M ) ( D ` k ) e. NN ) -> -. sum_ j e. ( 0 ... M ) ( D ` j ) = I ) |
72 |
16 71
|
condan |
|- ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) -> E. k e. ( 1 ... M ) ( D ` k ) e. NN ) |
73 |
1
|
nnzd |
|- ( ph -> P e. ZZ ) |
74 |
15
|
eqcomd |
|- ( ph -> I = sum_ j e. ( 0 ... M ) ( D ` j ) ) |
75 |
74
|
fveq2d |
|- ( ph -> ( ! ` I ) = ( ! ` sum_ j e. ( 0 ... M ) ( D ` j ) ) ) |
76 |
75
|
oveq1d |
|- ( ph -> ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) = ( ( ! ` sum_ j e. ( 0 ... M ) ( D ` j ) ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) ) |
77 |
|
nfcv |
|- F/_ j D |
78 |
|
fzfid |
|- ( ph -> ( 0 ... M ) e. Fin ) |
79 |
|
nn0ex |
|- NN0 e. _V |
80 |
|
mapss |
|- ( ( NN0 e. _V /\ ( 0 ... I ) C_ NN0 ) -> ( ( 0 ... I ) ^m ( 0 ... M ) ) C_ ( NN0 ^m ( 0 ... M ) ) ) |
81 |
79 42 80
|
mp2an |
|- ( ( 0 ... I ) ^m ( 0 ... M ) ) C_ ( NN0 ^m ( 0 ... M ) ) |
82 |
81 24
|
sselid |
|- ( ph -> D e. ( NN0 ^m ( 0 ... M ) ) ) |
83 |
77 78 82
|
mccl |
|- ( ph -> ( ( ! ` sum_ j e. ( 0 ... M ) ( D ` j ) ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) e. NN ) |
84 |
76 83
|
eqeltrd |
|- ( ph -> ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) e. NN ) |
85 |
84
|
nnzd |
|- ( ph -> ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) e. ZZ ) |
86 |
|
fzfid |
|- ( ph -> ( 1 ... M ) e. Fin ) |
87 |
1
|
adantr |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> P e. NN ) |
88 |
26
|
adantr |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> D : ( 0 ... M ) --> ( 0 ... I ) ) |
89 |
44
|
adantl |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> j e. ( 0 ... M ) ) |
90 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
91 |
5 90
|
eqeltrd |
|- ( ph -> J e. ZZ ) |
92 |
91
|
adantr |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> J e. ZZ ) |
93 |
87 88 89 92
|
etransclem3 |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) e. ZZ ) |
94 |
86 93
|
fprodzcl |
|- ( ph -> prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) e. ZZ ) |
95 |
73 85 94
|
3jca |
|- ( ph -> ( P e. ZZ /\ ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) e. ZZ /\ prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) e. ZZ ) ) |
96 |
95
|
3ad2ant1 |
|- ( ( ph /\ k e. ( 1 ... M ) /\ ( D ` k ) e. NN ) -> ( P e. ZZ /\ ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) e. ZZ /\ prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) e. ZZ ) ) |
97 |
73
|
adantr |
|- ( ( ph /\ k e. ( 1 ... M ) ) -> P e. ZZ ) |
98 |
1
|
adantr |
|- ( ( ph /\ k e. ( 1 ... M ) ) -> P e. NN ) |
99 |
26
|
adantr |
|- ( ( ph /\ k e. ( 1 ... M ) ) -> D : ( 0 ... M ) --> ( 0 ... I ) ) |
100 |
43
|
sseli |
|- ( k e. ( 1 ... M ) -> k e. ( 0 ... M ) ) |
101 |
100
|
adantl |
|- ( ( ph /\ k e. ( 1 ... M ) ) -> k e. ( 0 ... M ) ) |
102 |
91
|
adantr |
|- ( ( ph /\ k e. ( 1 ... M ) ) -> J e. ZZ ) |
103 |
98 99 101 102
|
etransclem3 |
|- ( ( ph /\ k e. ( 1 ... M ) ) -> if ( P < ( D ` k ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` k ) ) ) ) x. ( ( J - k ) ^ ( P - ( D ` k ) ) ) ) ) e. ZZ ) |
104 |
|
difss |
|- ( ( 1 ... M ) \ { k } ) C_ ( 1 ... M ) |
105 |
|
ssfi |
|- ( ( ( 1 ... M ) e. Fin /\ ( ( 1 ... M ) \ { k } ) C_ ( 1 ... M ) ) -> ( ( 1 ... M ) \ { k } ) e. Fin ) |
106 |
53 104 105
|
mp2an |
|- ( ( 1 ... M ) \ { k } ) e. Fin |
107 |
106
|
a1i |
|- ( ph -> ( ( 1 ... M ) \ { k } ) e. Fin ) |
108 |
1
|
adantr |
|- ( ( ph /\ j e. ( ( 1 ... M ) \ { k } ) ) -> P e. NN ) |
109 |
26
|
adantr |
|- ( ( ph /\ j e. ( ( 1 ... M ) \ { k } ) ) -> D : ( 0 ... M ) --> ( 0 ... I ) ) |
110 |
104 43
|
sstri |
|- ( ( 1 ... M ) \ { k } ) C_ ( 0 ... M ) |
111 |
110
|
sseli |
|- ( j e. ( ( 1 ... M ) \ { k } ) -> j e. ( 0 ... M ) ) |
112 |
111
|
adantl |
|- ( ( ph /\ j e. ( ( 1 ... M ) \ { k } ) ) -> j e. ( 0 ... M ) ) |
113 |
91
|
adantr |
|- ( ( ph /\ j e. ( ( 1 ... M ) \ { k } ) ) -> J e. ZZ ) |
114 |
108 109 112 113
|
etransclem3 |
|- ( ( ph /\ j e. ( ( 1 ... M ) \ { k } ) ) -> if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) e. ZZ ) |
115 |
107 114
|
fprodzcl |
|- ( ph -> prod_ j e. ( ( 1 ... M ) \ { k } ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) e. ZZ ) |
116 |
115
|
adantr |
|- ( ( ph /\ k e. ( 1 ... M ) ) -> prod_ j e. ( ( 1 ... M ) \ { k } ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) e. ZZ ) |
117 |
97 103 116
|
3jca |
|- ( ( ph /\ k e. ( 1 ... M ) ) -> ( P e. ZZ /\ if ( P < ( D ` k ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` k ) ) ) ) x. ( ( J - k ) ^ ( P - ( D ` k ) ) ) ) ) e. ZZ /\ prod_ j e. ( ( 1 ... M ) \ { k } ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) e. ZZ ) ) |
118 |
117
|
3adant3 |
|- ( ( ph /\ k e. ( 1 ... M ) /\ ( D ` k ) e. NN ) -> ( P e. ZZ /\ if ( P < ( D ` k ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` k ) ) ) ) x. ( ( J - k ) ^ ( P - ( D ` k ) ) ) ) ) e. ZZ /\ prod_ j e. ( ( 1 ... M ) \ { k } ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) e. ZZ ) ) |
119 |
|
dvds0 |
|- ( P e. ZZ -> P || 0 ) |
120 |
73 119
|
syl |
|- ( ph -> P || 0 ) |
121 |
120
|
adantr |
|- ( ( ph /\ P < ( D ` k ) ) -> P || 0 ) |
122 |
121
|
3ad2antl1 |
|- ( ( ( ph /\ k e. ( 1 ... M ) /\ ( D ` k ) e. NN ) /\ P < ( D ` k ) ) -> P || 0 ) |
123 |
|
iftrue |
|- ( P < ( D ` k ) -> if ( P < ( D ` k ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` k ) ) ) ) x. ( ( J - k ) ^ ( P - ( D ` k ) ) ) ) ) = 0 ) |
124 |
123
|
eqcomd |
|- ( P < ( D ` k ) -> 0 = if ( P < ( D ` k ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` k ) ) ) ) x. ( ( J - k ) ^ ( P - ( D ` k ) ) ) ) ) ) |
125 |
124
|
adantl |
|- ( ( ( ph /\ k e. ( 1 ... M ) /\ ( D ` k ) e. NN ) /\ P < ( D ` k ) ) -> 0 = if ( P < ( D ` k ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` k ) ) ) ) x. ( ( J - k ) ^ ( P - ( D ` k ) ) ) ) ) ) |
126 |
122 125
|
breqtrd |
|- ( ( ( ph /\ k e. ( 1 ... M ) /\ ( D ` k ) e. NN ) /\ P < ( D ` k ) ) -> P || if ( P < ( D ` k ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` k ) ) ) ) x. ( ( J - k ) ^ ( P - ( D ` k ) ) ) ) ) ) |
127 |
97
|
adantr |
|- ( ( ( ph /\ k e. ( 1 ... M ) ) /\ -. P < ( D ` k ) ) -> P e. ZZ ) |
128 |
|
0zd |
|- ( ( ph /\ k e. ( 1 ... M ) ) -> 0 e. ZZ ) |
129 |
99 101
|
ffvelrnd |
|- ( ( ph /\ k e. ( 1 ... M ) ) -> ( D ` k ) e. ( 0 ... I ) ) |
130 |
129
|
elfzelzd |
|- ( ( ph /\ k e. ( 1 ... M ) ) -> ( D ` k ) e. ZZ ) |
131 |
97 130
|
zsubcld |
|- ( ( ph /\ k e. ( 1 ... M ) ) -> ( P - ( D ` k ) ) e. ZZ ) |
132 |
128 97 131
|
3jca |
|- ( ( ph /\ k e. ( 1 ... M ) ) -> ( 0 e. ZZ /\ P e. ZZ /\ ( P - ( D ` k ) ) e. ZZ ) ) |
133 |
132
|
adantr |
|- ( ( ( ph /\ k e. ( 1 ... M ) ) /\ -. P < ( D ` k ) ) -> ( 0 e. ZZ /\ P e. ZZ /\ ( P - ( D ` k ) ) e. ZZ ) ) |
134 |
|
fzssre |
|- ( 0 ... I ) C_ RR |
135 |
134 129
|
sselid |
|- ( ( ph /\ k e. ( 1 ... M ) ) -> ( D ` k ) e. RR ) |
136 |
135
|
adantr |
|- ( ( ( ph /\ k e. ( 1 ... M ) ) /\ -. P < ( D ` k ) ) -> ( D ` k ) e. RR ) |
137 |
127
|
zred |
|- ( ( ( ph /\ k e. ( 1 ... M ) ) /\ -. P < ( D ` k ) ) -> P e. RR ) |
138 |
|
simpr |
|- ( ( ( ph /\ k e. ( 1 ... M ) ) /\ -. P < ( D ` k ) ) -> -. P < ( D ` k ) ) |
139 |
136 137 138
|
nltled |
|- ( ( ( ph /\ k e. ( 1 ... M ) ) /\ -. P < ( D ` k ) ) -> ( D ` k ) <_ P ) |
140 |
137 136
|
subge0d |
|- ( ( ( ph /\ k e. ( 1 ... M ) ) /\ -. P < ( D ` k ) ) -> ( 0 <_ ( P - ( D ` k ) ) <-> ( D ` k ) <_ P ) ) |
141 |
139 140
|
mpbird |
|- ( ( ( ph /\ k e. ( 1 ... M ) ) /\ -. P < ( D ` k ) ) -> 0 <_ ( P - ( D ` k ) ) ) |
142 |
|
elfzle1 |
|- ( ( D ` k ) e. ( 0 ... I ) -> 0 <_ ( D ` k ) ) |
143 |
129 142
|
syl |
|- ( ( ph /\ k e. ( 1 ... M ) ) -> 0 <_ ( D ` k ) ) |
144 |
143
|
adantr |
|- ( ( ( ph /\ k e. ( 1 ... M ) ) /\ -. P < ( D ` k ) ) -> 0 <_ ( D ` k ) ) |
145 |
137 136
|
subge02d |
|- ( ( ( ph /\ k e. ( 1 ... M ) ) /\ -. P < ( D ` k ) ) -> ( 0 <_ ( D ` k ) <-> ( P - ( D ` k ) ) <_ P ) ) |
146 |
144 145
|
mpbid |
|- ( ( ( ph /\ k e. ( 1 ... M ) ) /\ -. P < ( D ` k ) ) -> ( P - ( D ` k ) ) <_ P ) |
147 |
133 141 146
|
jca32 |
|- ( ( ( ph /\ k e. ( 1 ... M ) ) /\ -. P < ( D ` k ) ) -> ( ( 0 e. ZZ /\ P e. ZZ /\ ( P - ( D ` k ) ) e. ZZ ) /\ ( 0 <_ ( P - ( D ` k ) ) /\ ( P - ( D ` k ) ) <_ P ) ) ) |
148 |
|
elfz2 |
|- ( ( P - ( D ` k ) ) e. ( 0 ... P ) <-> ( ( 0 e. ZZ /\ P e. ZZ /\ ( P - ( D ` k ) ) e. ZZ ) /\ ( 0 <_ ( P - ( D ` k ) ) /\ ( P - ( D ` k ) ) <_ P ) ) ) |
149 |
147 148
|
sylibr |
|- ( ( ( ph /\ k e. ( 1 ... M ) ) /\ -. P < ( D ` k ) ) -> ( P - ( D ` k ) ) e. ( 0 ... P ) ) |
150 |
|
permnn |
|- ( ( P - ( D ` k ) ) e. ( 0 ... P ) -> ( ( ! ` P ) / ( ! ` ( P - ( D ` k ) ) ) ) e. NN ) |
151 |
149 150
|
syl |
|- ( ( ( ph /\ k e. ( 1 ... M ) ) /\ -. P < ( D ` k ) ) -> ( ( ! ` P ) / ( ! ` ( P - ( D ` k ) ) ) ) e. NN ) |
152 |
151
|
nnzd |
|- ( ( ( ph /\ k e. ( 1 ... M ) ) /\ -. P < ( D ` k ) ) -> ( ( ! ` P ) / ( ! ` ( P - ( D ` k ) ) ) ) e. ZZ ) |
153 |
101
|
elfzelzd |
|- ( ( ph /\ k e. ( 1 ... M ) ) -> k e. ZZ ) |
154 |
102 153
|
zsubcld |
|- ( ( ph /\ k e. ( 1 ... M ) ) -> ( J - k ) e. ZZ ) |
155 |
154
|
adantr |
|- ( ( ( ph /\ k e. ( 1 ... M ) ) /\ -. P < ( D ` k ) ) -> ( J - k ) e. ZZ ) |
156 |
131
|
adantr |
|- ( ( ( ph /\ k e. ( 1 ... M ) ) /\ -. P < ( D ` k ) ) -> ( P - ( D ` k ) ) e. ZZ ) |
157 |
|
elnn0z |
|- ( ( P - ( D ` k ) ) e. NN0 <-> ( ( P - ( D ` k ) ) e. ZZ /\ 0 <_ ( P - ( D ` k ) ) ) ) |
158 |
156 141 157
|
sylanbrc |
|- ( ( ( ph /\ k e. ( 1 ... M ) ) /\ -. P < ( D ` k ) ) -> ( P - ( D ` k ) ) e. NN0 ) |
159 |
|
zexpcl |
|- ( ( ( J - k ) e. ZZ /\ ( P - ( D ` k ) ) e. NN0 ) -> ( ( J - k ) ^ ( P - ( D ` k ) ) ) e. ZZ ) |
160 |
155 158 159
|
syl2anc |
|- ( ( ( ph /\ k e. ( 1 ... M ) ) /\ -. P < ( D ` k ) ) -> ( ( J - k ) ^ ( P - ( D ` k ) ) ) e. ZZ ) |
161 |
127 152 160
|
3jca |
|- ( ( ( ph /\ k e. ( 1 ... M ) ) /\ -. P < ( D ` k ) ) -> ( P e. ZZ /\ ( ( ! ` P ) / ( ! ` ( P - ( D ` k ) ) ) ) e. ZZ /\ ( ( J - k ) ^ ( P - ( D ` k ) ) ) e. ZZ ) ) |
162 |
161
|
3adantl3 |
|- ( ( ( ph /\ k e. ( 1 ... M ) /\ ( D ` k ) e. NN ) /\ -. P < ( D ` k ) ) -> ( P e. ZZ /\ ( ( ! ` P ) / ( ! ` ( P - ( D ` k ) ) ) ) e. ZZ /\ ( ( J - k ) ^ ( P - ( D ` k ) ) ) e. ZZ ) ) |
163 |
127
|
3adantl3 |
|- ( ( ( ph /\ k e. ( 1 ... M ) /\ ( D ` k ) e. NN ) /\ -. P < ( D ` k ) ) -> P e. ZZ ) |
164 |
61
|
nn0zd |
|- ( ph -> ( P - 1 ) e. ZZ ) |
165 |
164
|
adantr |
|- ( ( ph /\ k e. ( 1 ... M ) ) -> ( P - 1 ) e. ZZ ) |
166 |
128 165 131
|
3jca |
|- ( ( ph /\ k e. ( 1 ... M ) ) -> ( 0 e. ZZ /\ ( P - 1 ) e. ZZ /\ ( P - ( D ` k ) ) e. ZZ ) ) |
167 |
166
|
3adant3 |
|- ( ( ph /\ k e. ( 1 ... M ) /\ ( D ` k ) e. NN ) -> ( 0 e. ZZ /\ ( P - 1 ) e. ZZ /\ ( P - ( D ` k ) ) e. ZZ ) ) |
168 |
167
|
adantr |
|- ( ( ( ph /\ k e. ( 1 ... M ) /\ ( D ` k ) e. NN ) /\ -. P < ( D ` k ) ) -> ( 0 e. ZZ /\ ( P - 1 ) e. ZZ /\ ( P - ( D ` k ) ) e. ZZ ) ) |
169 |
141
|
3adantl3 |
|- ( ( ( ph /\ k e. ( 1 ... M ) /\ ( D ` k ) e. NN ) /\ -. P < ( D ` k ) ) -> 0 <_ ( P - ( D ` k ) ) ) |
170 |
|
1red |
|- ( ( ph /\ ( D ` k ) e. NN ) -> 1 e. RR ) |
171 |
|
nnre |
|- ( ( D ` k ) e. NN -> ( D ` k ) e. RR ) |
172 |
171
|
adantl |
|- ( ( ph /\ ( D ` k ) e. NN ) -> ( D ` k ) e. RR ) |
173 |
1
|
nnred |
|- ( ph -> P e. RR ) |
174 |
173
|
adantr |
|- ( ( ph /\ ( D ` k ) e. NN ) -> P e. RR ) |
175 |
|
nnge1 |
|- ( ( D ` k ) e. NN -> 1 <_ ( D ` k ) ) |
176 |
175
|
adantl |
|- ( ( ph /\ ( D ` k ) e. NN ) -> 1 <_ ( D ` k ) ) |
177 |
170 172 174 176
|
lesub2dd |
|- ( ( ph /\ ( D ` k ) e. NN ) -> ( P - ( D ` k ) ) <_ ( P - 1 ) ) |
178 |
177
|
3adant2 |
|- ( ( ph /\ k e. ( 1 ... M ) /\ ( D ` k ) e. NN ) -> ( P - ( D ` k ) ) <_ ( P - 1 ) ) |
179 |
178
|
adantr |
|- ( ( ( ph /\ k e. ( 1 ... M ) /\ ( D ` k ) e. NN ) /\ -. P < ( D ` k ) ) -> ( P - ( D ` k ) ) <_ ( P - 1 ) ) |
180 |
168 169 179
|
jca32 |
|- ( ( ( ph /\ k e. ( 1 ... M ) /\ ( D ` k ) e. NN ) /\ -. P < ( D ` k ) ) -> ( ( 0 e. ZZ /\ ( P - 1 ) e. ZZ /\ ( P - ( D ` k ) ) e. ZZ ) /\ ( 0 <_ ( P - ( D ` k ) ) /\ ( P - ( D ` k ) ) <_ ( P - 1 ) ) ) ) |
181 |
|
elfz2 |
|- ( ( P - ( D ` k ) ) e. ( 0 ... ( P - 1 ) ) <-> ( ( 0 e. ZZ /\ ( P - 1 ) e. ZZ /\ ( P - ( D ` k ) ) e. ZZ ) /\ ( 0 <_ ( P - ( D ` k ) ) /\ ( P - ( D ` k ) ) <_ ( P - 1 ) ) ) ) |
182 |
180 181
|
sylibr |
|- ( ( ( ph /\ k e. ( 1 ... M ) /\ ( D ` k ) e. NN ) /\ -. P < ( D ` k ) ) -> ( P - ( D ` k ) ) e. ( 0 ... ( P - 1 ) ) ) |
183 |
|
permnn |
|- ( ( P - ( D ` k ) ) e. ( 0 ... ( P - 1 ) ) -> ( ( ! ` ( P - 1 ) ) / ( ! ` ( P - ( D ` k ) ) ) ) e. NN ) |
184 |
182 183
|
syl |
|- ( ( ( ph /\ k e. ( 1 ... M ) /\ ( D ` k ) e. NN ) /\ -. P < ( D ` k ) ) -> ( ( ! ` ( P - 1 ) ) / ( ! ` ( P - ( D ` k ) ) ) ) e. NN ) |
185 |
184
|
nnzd |
|- ( ( ( ph /\ k e. ( 1 ... M ) /\ ( D ` k ) e. NN ) /\ -. P < ( D ` k ) ) -> ( ( ! ` ( P - 1 ) ) / ( ! ` ( P - ( D ` k ) ) ) ) e. ZZ ) |
186 |
|
dvdsmul1 |
|- ( ( P e. ZZ /\ ( ( ! ` ( P - 1 ) ) / ( ! ` ( P - ( D ` k ) ) ) ) e. ZZ ) -> P || ( P x. ( ( ! ` ( P - 1 ) ) / ( ! ` ( P - ( D ` k ) ) ) ) ) ) |
187 |
163 185 186
|
syl2anc |
|- ( ( ( ph /\ k e. ( 1 ... M ) /\ ( D ` k ) e. NN ) /\ -. P < ( D ` k ) ) -> P || ( P x. ( ( ! ` ( P - 1 ) ) / ( ! ` ( P - ( D ` k ) ) ) ) ) ) |
188 |
1
|
nncnd |
|- ( ph -> P e. CC ) |
189 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
190 |
188 189
|
npcand |
|- ( ph -> ( ( P - 1 ) + 1 ) = P ) |
191 |
190
|
eqcomd |
|- ( ph -> P = ( ( P - 1 ) + 1 ) ) |
192 |
191
|
fveq2d |
|- ( ph -> ( ! ` P ) = ( ! ` ( ( P - 1 ) + 1 ) ) ) |
193 |
|
facp1 |
|- ( ( P - 1 ) e. NN0 -> ( ! ` ( ( P - 1 ) + 1 ) ) = ( ( ! ` ( P - 1 ) ) x. ( ( P - 1 ) + 1 ) ) ) |
194 |
61 193
|
syl |
|- ( ph -> ( ! ` ( ( P - 1 ) + 1 ) ) = ( ( ! ` ( P - 1 ) ) x. ( ( P - 1 ) + 1 ) ) ) |
195 |
190
|
oveq2d |
|- ( ph -> ( ( ! ` ( P - 1 ) ) x. ( ( P - 1 ) + 1 ) ) = ( ( ! ` ( P - 1 ) ) x. P ) ) |
196 |
61
|
faccld |
|- ( ph -> ( ! ` ( P - 1 ) ) e. NN ) |
197 |
196
|
nncnd |
|- ( ph -> ( ! ` ( P - 1 ) ) e. CC ) |
198 |
197 188
|
mulcomd |
|- ( ph -> ( ( ! ` ( P - 1 ) ) x. P ) = ( P x. ( ! ` ( P - 1 ) ) ) ) |
199 |
195 198
|
eqtrd |
|- ( ph -> ( ( ! ` ( P - 1 ) ) x. ( ( P - 1 ) + 1 ) ) = ( P x. ( ! ` ( P - 1 ) ) ) ) |
200 |
192 194 199
|
3eqtrd |
|- ( ph -> ( ! ` P ) = ( P x. ( ! ` ( P - 1 ) ) ) ) |
201 |
200
|
oveq1d |
|- ( ph -> ( ( ! ` P ) / ( ! ` ( P - ( D ` k ) ) ) ) = ( ( P x. ( ! ` ( P - 1 ) ) ) / ( ! ` ( P - ( D ` k ) ) ) ) ) |
202 |
201
|
adantr |
|- ( ( ph /\ -. P < ( D ` k ) ) -> ( ( ! ` P ) / ( ! ` ( P - ( D ` k ) ) ) ) = ( ( P x. ( ! ` ( P - 1 ) ) ) / ( ! ` ( P - ( D ` k ) ) ) ) ) |
203 |
202
|
3ad2antl1 |
|- ( ( ( ph /\ k e. ( 1 ... M ) /\ ( D ` k ) e. NN ) /\ -. P < ( D ` k ) ) -> ( ( ! ` P ) / ( ! ` ( P - ( D ` k ) ) ) ) = ( ( P x. ( ! ` ( P - 1 ) ) ) / ( ! ` ( P - ( D ` k ) ) ) ) ) |
204 |
188
|
ad2antrr |
|- ( ( ( ph /\ k e. ( 1 ... M ) ) /\ -. P < ( D ` k ) ) -> P e. CC ) |
205 |
197
|
ad2antrr |
|- ( ( ( ph /\ k e. ( 1 ... M ) ) /\ -. P < ( D ` k ) ) -> ( ! ` ( P - 1 ) ) e. CC ) |
206 |
158
|
faccld |
|- ( ( ( ph /\ k e. ( 1 ... M ) ) /\ -. P < ( D ` k ) ) -> ( ! ` ( P - ( D ` k ) ) ) e. NN ) |
207 |
206
|
nncnd |
|- ( ( ( ph /\ k e. ( 1 ... M ) ) /\ -. P < ( D ` k ) ) -> ( ! ` ( P - ( D ` k ) ) ) e. CC ) |
208 |
206
|
nnne0d |
|- ( ( ( ph /\ k e. ( 1 ... M ) ) /\ -. P < ( D ` k ) ) -> ( ! ` ( P - ( D ` k ) ) ) =/= 0 ) |
209 |
204 205 207 208
|
divassd |
|- ( ( ( ph /\ k e. ( 1 ... M ) ) /\ -. P < ( D ` k ) ) -> ( ( P x. ( ! ` ( P - 1 ) ) ) / ( ! ` ( P - ( D ` k ) ) ) ) = ( P x. ( ( ! ` ( P - 1 ) ) / ( ! ` ( P - ( D ` k ) ) ) ) ) ) |
210 |
209
|
3adantl3 |
|- ( ( ( ph /\ k e. ( 1 ... M ) /\ ( D ` k ) e. NN ) /\ -. P < ( D ` k ) ) -> ( ( P x. ( ! ` ( P - 1 ) ) ) / ( ! ` ( P - ( D ` k ) ) ) ) = ( P x. ( ( ! ` ( P - 1 ) ) / ( ! ` ( P - ( D ` k ) ) ) ) ) ) |
211 |
203 210
|
eqtr2d |
|- ( ( ( ph /\ k e. ( 1 ... M ) /\ ( D ` k ) e. NN ) /\ -. P < ( D ` k ) ) -> ( P x. ( ( ! ` ( P - 1 ) ) / ( ! ` ( P - ( D ` k ) ) ) ) ) = ( ( ! ` P ) / ( ! ` ( P - ( D ` k ) ) ) ) ) |
212 |
187 211
|
breqtrd |
|- ( ( ( ph /\ k e. ( 1 ... M ) /\ ( D ` k ) e. NN ) /\ -. P < ( D ` k ) ) -> P || ( ( ! ` P ) / ( ! ` ( P - ( D ` k ) ) ) ) ) |
213 |
|
dvdsmultr1 |
|- ( ( P e. ZZ /\ ( ( ! ` P ) / ( ! ` ( P - ( D ` k ) ) ) ) e. ZZ /\ ( ( J - k ) ^ ( P - ( D ` k ) ) ) e. ZZ ) -> ( P || ( ( ! ` P ) / ( ! ` ( P - ( D ` k ) ) ) ) -> P || ( ( ( ! ` P ) / ( ! ` ( P - ( D ` k ) ) ) ) x. ( ( J - k ) ^ ( P - ( D ` k ) ) ) ) ) ) |
214 |
162 212 213
|
sylc |
|- ( ( ( ph /\ k e. ( 1 ... M ) /\ ( D ` k ) e. NN ) /\ -. P < ( D ` k ) ) -> P || ( ( ( ! ` P ) / ( ! ` ( P - ( D ` k ) ) ) ) x. ( ( J - k ) ^ ( P - ( D ` k ) ) ) ) ) |
215 |
|
iffalse |
|- ( -. P < ( D ` k ) -> if ( P < ( D ` k ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` k ) ) ) ) x. ( ( J - k ) ^ ( P - ( D ` k ) ) ) ) ) = ( ( ( ! ` P ) / ( ! ` ( P - ( D ` k ) ) ) ) x. ( ( J - k ) ^ ( P - ( D ` k ) ) ) ) ) |
216 |
215
|
adantl |
|- ( ( ( ph /\ k e. ( 1 ... M ) /\ ( D ` k ) e. NN ) /\ -. P < ( D ` k ) ) -> if ( P < ( D ` k ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` k ) ) ) ) x. ( ( J - k ) ^ ( P - ( D ` k ) ) ) ) ) = ( ( ( ! ` P ) / ( ! ` ( P - ( D ` k ) ) ) ) x. ( ( J - k ) ^ ( P - ( D ` k ) ) ) ) ) |
217 |
214 216
|
breqtrrd |
|- ( ( ( ph /\ k e. ( 1 ... M ) /\ ( D ` k ) e. NN ) /\ -. P < ( D ` k ) ) -> P || if ( P < ( D ` k ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` k ) ) ) ) x. ( ( J - k ) ^ ( P - ( D ` k ) ) ) ) ) ) |
218 |
126 217
|
pm2.61dan |
|- ( ( ph /\ k e. ( 1 ... M ) /\ ( D ` k ) e. NN ) -> P || if ( P < ( D ` k ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` k ) ) ) ) x. ( ( J - k ) ^ ( P - ( D ` k ) ) ) ) ) ) |
219 |
|
dvdsmultr1 |
|- ( ( P e. ZZ /\ if ( P < ( D ` k ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` k ) ) ) ) x. ( ( J - k ) ^ ( P - ( D ` k ) ) ) ) ) e. ZZ /\ prod_ j e. ( ( 1 ... M ) \ { k } ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) e. ZZ ) -> ( P || if ( P < ( D ` k ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` k ) ) ) ) x. ( ( J - k ) ^ ( P - ( D ` k ) ) ) ) ) -> P || ( if ( P < ( D ` k ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` k ) ) ) ) x. ( ( J - k ) ^ ( P - ( D ` k ) ) ) ) ) x. prod_ j e. ( ( 1 ... M ) \ { k } ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) ) |
220 |
118 218 219
|
sylc |
|- ( ( ph /\ k e. ( 1 ... M ) /\ ( D ` k ) e. NN ) -> P || ( if ( P < ( D ` k ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` k ) ) ) ) x. ( ( J - k ) ^ ( P - ( D ` k ) ) ) ) ) x. prod_ j e. ( ( 1 ... M ) \ { k } ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) |
221 |
|
fzfid |
|- ( ( ph /\ k e. ( 1 ... M ) /\ ( D ` k ) e. NN ) -> ( 1 ... M ) e. Fin ) |
222 |
93
|
zcnd |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) e. CC ) |
223 |
222
|
3ad2antl1 |
|- ( ( ( ph /\ k e. ( 1 ... M ) /\ ( D ` k ) e. NN ) /\ j e. ( 1 ... M ) ) -> if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) e. CC ) |
224 |
|
simp2 |
|- ( ( ph /\ k e. ( 1 ... M ) /\ ( D ` k ) e. NN ) -> k e. ( 1 ... M ) ) |
225 |
|
fveq2 |
|- ( j = k -> ( D ` j ) = ( D ` k ) ) |
226 |
225
|
breq2d |
|- ( j = k -> ( P < ( D ` j ) <-> P < ( D ` k ) ) ) |
227 |
225
|
oveq2d |
|- ( j = k -> ( P - ( D ` j ) ) = ( P - ( D ` k ) ) ) |
228 |
227
|
fveq2d |
|- ( j = k -> ( ! ` ( P - ( D ` j ) ) ) = ( ! ` ( P - ( D ` k ) ) ) ) |
229 |
228
|
oveq2d |
|- ( j = k -> ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) = ( ( ! ` P ) / ( ! ` ( P - ( D ` k ) ) ) ) ) |
230 |
|
oveq2 |
|- ( j = k -> ( J - j ) = ( J - k ) ) |
231 |
230 227
|
oveq12d |
|- ( j = k -> ( ( J - j ) ^ ( P - ( D ` j ) ) ) = ( ( J - k ) ^ ( P - ( D ` k ) ) ) ) |
232 |
229 231
|
oveq12d |
|- ( j = k -> ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) = ( ( ( ! ` P ) / ( ! ` ( P - ( D ` k ) ) ) ) x. ( ( J - k ) ^ ( P - ( D ` k ) ) ) ) ) |
233 |
226 232
|
ifbieq2d |
|- ( j = k -> if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) = if ( P < ( D ` k ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` k ) ) ) ) x. ( ( J - k ) ^ ( P - ( D ` k ) ) ) ) ) ) |
234 |
233
|
adantl |
|- ( ( ( ph /\ k e. ( 1 ... M ) /\ ( D ` k ) e. NN ) /\ j = k ) -> if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) = if ( P < ( D ` k ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` k ) ) ) ) x. ( ( J - k ) ^ ( P - ( D ` k ) ) ) ) ) ) |
235 |
221 223 224 234
|
fprodsplit1 |
|- ( ( ph /\ k e. ( 1 ... M ) /\ ( D ` k ) e. NN ) -> prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) = ( if ( P < ( D ` k ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` k ) ) ) ) x. ( ( J - k ) ^ ( P - ( D ` k ) ) ) ) ) x. prod_ j e. ( ( 1 ... M ) \ { k } ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) |
236 |
220 235
|
breqtrrd |
|- ( ( ph /\ k e. ( 1 ... M ) /\ ( D ` k ) e. NN ) -> P || prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) |
237 |
|
dvdsmultr2 |
|- ( ( P e. ZZ /\ ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) e. ZZ /\ prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) e. ZZ ) -> ( P || prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) -> P || ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) ) |
238 |
96 236 237
|
sylc |
|- ( ( ph /\ k e. ( 1 ... M ) /\ ( D ` k ) e. NN ) -> P || ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) |
239 |
238
|
3adant1r |
|- ( ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) /\ k e. ( 1 ... M ) /\ ( D ` k ) e. NN ) -> P || ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) |
240 |
|
simpr |
|- ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) -> ( D ` 0 ) = ( P - 1 ) ) |
241 |
|
eluzfz1 |
|- ( M e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... M ) ) |
242 |
19 241
|
syl |
|- ( ph -> 0 e. ( 0 ... M ) ) |
243 |
26 242
|
ffvelrnd |
|- ( ph -> ( D ` 0 ) e. ( 0 ... I ) ) |
244 |
134 243
|
sselid |
|- ( ph -> ( D ` 0 ) e. RR ) |
245 |
244
|
adantr |
|- ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) -> ( D ` 0 ) e. RR ) |
246 |
62
|
adantr |
|- ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) -> ( P - 1 ) e. RR ) |
247 |
245 246
|
lttri3d |
|- ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) -> ( ( D ` 0 ) = ( P - 1 ) <-> ( -. ( D ` 0 ) < ( P - 1 ) /\ -. ( P - 1 ) < ( D ` 0 ) ) ) ) |
248 |
240 247
|
mpbid |
|- ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) -> ( -. ( D ` 0 ) < ( P - 1 ) /\ -. ( P - 1 ) < ( D ` 0 ) ) ) |
249 |
248
|
simprd |
|- ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) -> -. ( P - 1 ) < ( D ` 0 ) ) |
250 |
249
|
iffalsed |
|- ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) -> if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) = ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) |
251 |
|
oveq2 |
|- ( ( D ` 0 ) = ( P - 1 ) -> ( ( P - 1 ) - ( D ` 0 ) ) = ( ( P - 1 ) - ( P - 1 ) ) ) |
252 |
63
|
subidd |
|- ( ph -> ( ( P - 1 ) - ( P - 1 ) ) = 0 ) |
253 |
251 252
|
sylan9eqr |
|- ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) -> ( ( P - 1 ) - ( D ` 0 ) ) = 0 ) |
254 |
253
|
fveq2d |
|- ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) -> ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) = ( ! ` 0 ) ) |
255 |
|
fac0 |
|- ( ! ` 0 ) = 1 |
256 |
254 255
|
eqtrdi |
|- ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) -> ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) = 1 ) |
257 |
256
|
oveq2d |
|- ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) -> ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) = ( ( ! ` ( P - 1 ) ) / 1 ) ) |
258 |
197
|
div1d |
|- ( ph -> ( ( ! ` ( P - 1 ) ) / 1 ) = ( ! ` ( P - 1 ) ) ) |
259 |
258
|
adantr |
|- ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) -> ( ( ! ` ( P - 1 ) ) / 1 ) = ( ! ` ( P - 1 ) ) ) |
260 |
257 259
|
eqtrd |
|- ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) -> ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) = ( ! ` ( P - 1 ) ) ) |
261 |
253
|
oveq2d |
|- ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) -> ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) = ( J ^ 0 ) ) |
262 |
91
|
zcnd |
|- ( ph -> J e. CC ) |
263 |
262
|
exp0d |
|- ( ph -> ( J ^ 0 ) = 1 ) |
264 |
263
|
adantr |
|- ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) -> ( J ^ 0 ) = 1 ) |
265 |
261 264
|
eqtrd |
|- ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) -> ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) = 1 ) |
266 |
260 265
|
oveq12d |
|- ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) -> ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) = ( ( ! ` ( P - 1 ) ) x. 1 ) ) |
267 |
197
|
mulid1d |
|- ( ph -> ( ( ! ` ( P - 1 ) ) x. 1 ) = ( ! ` ( P - 1 ) ) ) |
268 |
267
|
adantr |
|- ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) -> ( ( ! ` ( P - 1 ) ) x. 1 ) = ( ! ` ( P - 1 ) ) ) |
269 |
250 266 268
|
3eqtrd |
|- ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) -> if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) = ( ! ` ( P - 1 ) ) ) |
270 |
269
|
oveq1d |
|- ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) -> ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) = ( ( ! ` ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) |
271 |
270
|
oveq2d |
|- ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) -> ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) = ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( ( ! ` ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) ) |
272 |
271
|
oveq1d |
|- ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) -> ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) = ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( ( ! ` ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) ) |
273 |
84
|
nncnd |
|- ( ph -> ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) e. CC ) |
274 |
94
|
zcnd |
|- ( ph -> prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) e. CC ) |
275 |
197 274
|
mulcld |
|- ( ph -> ( ( ! ` ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) e. CC ) |
276 |
196
|
nnne0d |
|- ( ph -> ( ! ` ( P - 1 ) ) =/= 0 ) |
277 |
273 275 197 276
|
divassd |
|- ( ph -> ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( ( ! ` ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) = ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( ( ( ! ` ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) ) ) |
278 |
277
|
adantr |
|- ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) -> ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( ( ! ` ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) = ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( ( ( ! ` ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) ) ) |
279 |
274 197 276
|
divcan3d |
|- ( ph -> ( ( ( ! ` ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) = prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) |
280 |
279
|
oveq2d |
|- ( ph -> ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( ( ( ! ` ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) ) = ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) |
281 |
280
|
adantr |
|- ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) -> ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( ( ( ! ` ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) ) = ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) |
282 |
272 278 281
|
3eqtrd |
|- ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) -> ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) = ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) |
283 |
282
|
3ad2ant1 |
|- ( ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) /\ k e. ( 1 ... M ) /\ ( D ` k ) e. NN ) -> ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) = ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) |
284 |
239 283
|
breqtrrd |
|- ( ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) /\ k e. ( 1 ... M ) /\ ( D ` k ) e. NN ) -> P || ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) ) |
285 |
284
|
rexlimdv3a |
|- ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) -> ( E. k e. ( 1 ... M ) ( D ` k ) e. NN -> P || ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) ) ) |
286 |
72 285
|
mpd |
|- ( ( ph /\ ( D ` 0 ) = ( P - 1 ) ) -> P || ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) ) |
287 |
120
|
adantr |
|- ( ( ph /\ ( D ` 0 ) =/= ( P - 1 ) ) -> P || 0 ) |
288 |
|
simpr |
|- ( ( ( ph /\ ( D ` 0 ) =/= ( P - 1 ) ) /\ ( P - 1 ) < ( D ` 0 ) ) -> ( P - 1 ) < ( D ` 0 ) ) |
289 |
288
|
iftrued |
|- ( ( ( ph /\ ( D ` 0 ) =/= ( P - 1 ) ) /\ ( P - 1 ) < ( D ` 0 ) ) -> if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) = 0 ) |
290 |
|
simpr |
|- ( ( ( ph /\ ( D ` 0 ) =/= ( P - 1 ) ) /\ -. ( P - 1 ) < ( D ` 0 ) ) -> -. ( P - 1 ) < ( D ` 0 ) ) |
291 |
290
|
iffalsed |
|- ( ( ( ph /\ ( D ` 0 ) =/= ( P - 1 ) ) /\ -. ( P - 1 ) < ( D ` 0 ) ) -> if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) = ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) |
292 |
|
simpll |
|- ( ( ( ph /\ ( D ` 0 ) =/= ( P - 1 ) ) /\ -. ( P - 1 ) < ( D ` 0 ) ) -> ph ) |
293 |
244
|
ad2antrr |
|- ( ( ( ph /\ ( D ` 0 ) =/= ( P - 1 ) ) /\ -. ( P - 1 ) < ( D ` 0 ) ) -> ( D ` 0 ) e. RR ) |
294 |
62
|
ad2antrr |
|- ( ( ( ph /\ ( D ` 0 ) =/= ( P - 1 ) ) /\ -. ( P - 1 ) < ( D ` 0 ) ) -> ( P - 1 ) e. RR ) |
295 |
293 294 290
|
nltled |
|- ( ( ( ph /\ ( D ` 0 ) =/= ( P - 1 ) ) /\ -. ( P - 1 ) < ( D ` 0 ) ) -> ( D ` 0 ) <_ ( P - 1 ) ) |
296 |
|
id |
|- ( ( D ` 0 ) =/= ( P - 1 ) -> ( D ` 0 ) =/= ( P - 1 ) ) |
297 |
296
|
necomd |
|- ( ( D ` 0 ) =/= ( P - 1 ) -> ( P - 1 ) =/= ( D ` 0 ) ) |
298 |
297
|
ad2antlr |
|- ( ( ( ph /\ ( D ` 0 ) =/= ( P - 1 ) ) /\ -. ( P - 1 ) < ( D ` 0 ) ) -> ( P - 1 ) =/= ( D ` 0 ) ) |
299 |
293 294 295 298
|
leneltd |
|- ( ( ( ph /\ ( D ` 0 ) =/= ( P - 1 ) ) /\ -. ( P - 1 ) < ( D ` 0 ) ) -> ( D ` 0 ) < ( P - 1 ) ) |
300 |
5
|
oveq1d |
|- ( ph -> ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) = ( 0 ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) |
301 |
300
|
adantr |
|- ( ( ph /\ ( D ` 0 ) < ( P - 1 ) ) -> ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) = ( 0 ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) |
302 |
243
|
elfzelzd |
|- ( ph -> ( D ` 0 ) e. ZZ ) |
303 |
164 302
|
zsubcld |
|- ( ph -> ( ( P - 1 ) - ( D ` 0 ) ) e. ZZ ) |
304 |
303
|
adantr |
|- ( ( ph /\ ( D ` 0 ) < ( P - 1 ) ) -> ( ( P - 1 ) - ( D ` 0 ) ) e. ZZ ) |
305 |
|
simpr |
|- ( ( ph /\ ( D ` 0 ) < ( P - 1 ) ) -> ( D ` 0 ) < ( P - 1 ) ) |
306 |
244
|
adantr |
|- ( ( ph /\ ( D ` 0 ) < ( P - 1 ) ) -> ( D ` 0 ) e. RR ) |
307 |
62
|
adantr |
|- ( ( ph /\ ( D ` 0 ) < ( P - 1 ) ) -> ( P - 1 ) e. RR ) |
308 |
306 307
|
posdifd |
|- ( ( ph /\ ( D ` 0 ) < ( P - 1 ) ) -> ( ( D ` 0 ) < ( P - 1 ) <-> 0 < ( ( P - 1 ) - ( D ` 0 ) ) ) ) |
309 |
305 308
|
mpbid |
|- ( ( ph /\ ( D ` 0 ) < ( P - 1 ) ) -> 0 < ( ( P - 1 ) - ( D ` 0 ) ) ) |
310 |
|
elnnz |
|- ( ( ( P - 1 ) - ( D ` 0 ) ) e. NN <-> ( ( ( P - 1 ) - ( D ` 0 ) ) e. ZZ /\ 0 < ( ( P - 1 ) - ( D ` 0 ) ) ) ) |
311 |
304 309 310
|
sylanbrc |
|- ( ( ph /\ ( D ` 0 ) < ( P - 1 ) ) -> ( ( P - 1 ) - ( D ` 0 ) ) e. NN ) |
312 |
311
|
0expd |
|- ( ( ph /\ ( D ` 0 ) < ( P - 1 ) ) -> ( 0 ^ ( ( P - 1 ) - ( D ` 0 ) ) ) = 0 ) |
313 |
301 312
|
eqtrd |
|- ( ( ph /\ ( D ` 0 ) < ( P - 1 ) ) -> ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) = 0 ) |
314 |
313
|
oveq2d |
|- ( ( ph /\ ( D ` 0 ) < ( P - 1 ) ) -> ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) = ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. 0 ) ) |
315 |
197
|
adantr |
|- ( ( ph /\ ( D ` 0 ) < ( P - 1 ) ) -> ( ! ` ( P - 1 ) ) e. CC ) |
316 |
311
|
nnnn0d |
|- ( ( ph /\ ( D ` 0 ) < ( P - 1 ) ) -> ( ( P - 1 ) - ( D ` 0 ) ) e. NN0 ) |
317 |
316
|
faccld |
|- ( ( ph /\ ( D ` 0 ) < ( P - 1 ) ) -> ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) e. NN ) |
318 |
317
|
nncnd |
|- ( ( ph /\ ( D ` 0 ) < ( P - 1 ) ) -> ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) e. CC ) |
319 |
317
|
nnne0d |
|- ( ( ph /\ ( D ` 0 ) < ( P - 1 ) ) -> ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) =/= 0 ) |
320 |
315 318 319
|
divcld |
|- ( ( ph /\ ( D ` 0 ) < ( P - 1 ) ) -> ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) e. CC ) |
321 |
320
|
mul01d |
|- ( ( ph /\ ( D ` 0 ) < ( P - 1 ) ) -> ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. 0 ) = 0 ) |
322 |
314 321
|
eqtrd |
|- ( ( ph /\ ( D ` 0 ) < ( P - 1 ) ) -> ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) = 0 ) |
323 |
292 299 322
|
syl2anc |
|- ( ( ( ph /\ ( D ` 0 ) =/= ( P - 1 ) ) /\ -. ( P - 1 ) < ( D ` 0 ) ) -> ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) = 0 ) |
324 |
291 323
|
eqtrd |
|- ( ( ( ph /\ ( D ` 0 ) =/= ( P - 1 ) ) /\ -. ( P - 1 ) < ( D ` 0 ) ) -> if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) = 0 ) |
325 |
289 324
|
pm2.61dan |
|- ( ( ph /\ ( D ` 0 ) =/= ( P - 1 ) ) -> if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) = 0 ) |
326 |
325
|
oveq1d |
|- ( ( ph /\ ( D ` 0 ) =/= ( P - 1 ) ) -> ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) = ( 0 x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) |
327 |
274
|
mul02d |
|- ( ph -> ( 0 x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) = 0 ) |
328 |
327
|
adantr |
|- ( ( ph /\ ( D ` 0 ) =/= ( P - 1 ) ) -> ( 0 x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) = 0 ) |
329 |
326 328
|
eqtrd |
|- ( ( ph /\ ( D ` 0 ) =/= ( P - 1 ) ) -> ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) = 0 ) |
330 |
329
|
oveq2d |
|- ( ( ph /\ ( D ` 0 ) =/= ( P - 1 ) ) -> ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) = ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. 0 ) ) |
331 |
273
|
mul01d |
|- ( ph -> ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. 0 ) = 0 ) |
332 |
331
|
adantr |
|- ( ( ph /\ ( D ` 0 ) =/= ( P - 1 ) ) -> ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. 0 ) = 0 ) |
333 |
330 332
|
eqtrd |
|- ( ( ph /\ ( D ` 0 ) =/= ( P - 1 ) ) -> ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) = 0 ) |
334 |
333
|
oveq1d |
|- ( ( ph /\ ( D ` 0 ) =/= ( P - 1 ) ) -> ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) = ( 0 / ( ! ` ( P - 1 ) ) ) ) |
335 |
197 276
|
div0d |
|- ( ph -> ( 0 / ( ! ` ( P - 1 ) ) ) = 0 ) |
336 |
335
|
adantr |
|- ( ( ph /\ ( D ` 0 ) =/= ( P - 1 ) ) -> ( 0 / ( ! ` ( P - 1 ) ) ) = 0 ) |
337 |
334 336
|
eqtrd |
|- ( ( ph /\ ( D ` 0 ) =/= ( P - 1 ) ) -> ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) = 0 ) |
338 |
287 337
|
breqtrrd |
|- ( ( ph /\ ( D ` 0 ) =/= ( P - 1 ) ) -> P || ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) ) |
339 |
286 338
|
pm2.61dane |
|- ( ph -> P || ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) ) |