Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem26.p |
|- ( ph -> P e. NN ) |
2 |
|
etransclem26.m |
|- ( ph -> M e. NN0 ) |
3 |
|
etransclem26.n |
|- ( ph -> N e. NN0 ) |
4 |
|
etransclem26.jz |
|- ( ph -> J e. ZZ ) |
5 |
|
etransclem26.c |
|- C = ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } ) |
6 |
|
etransclem26.d |
|- ( ph -> D e. ( C ` N ) ) |
7 |
5 3
|
etransclem12 |
|- ( ph -> ( C ` N ) = { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) |
8 |
6 7
|
eleqtrd |
|- ( ph -> D e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) |
9 |
|
fveq1 |
|- ( c = D -> ( c ` j ) = ( D ` j ) ) |
10 |
9
|
sumeq2sdv |
|- ( c = D -> sum_ j e. ( 0 ... M ) ( c ` j ) = sum_ j e. ( 0 ... M ) ( D ` j ) ) |
11 |
10
|
eqeq1d |
|- ( c = D -> ( sum_ j e. ( 0 ... M ) ( c ` j ) = N <-> sum_ j e. ( 0 ... M ) ( D ` j ) = N ) ) |
12 |
11
|
elrab |
|- ( D e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } <-> ( D e. ( ( 0 ... N ) ^m ( 0 ... M ) ) /\ sum_ j e. ( 0 ... M ) ( D ` j ) = N ) ) |
13 |
8 12
|
sylib |
|- ( ph -> ( D e. ( ( 0 ... N ) ^m ( 0 ... M ) ) /\ sum_ j e. ( 0 ... M ) ( D ` j ) = N ) ) |
14 |
13
|
simprd |
|- ( ph -> sum_ j e. ( 0 ... M ) ( D ` j ) = N ) |
15 |
14
|
eqcomd |
|- ( ph -> N = sum_ j e. ( 0 ... M ) ( D ` j ) ) |
16 |
15
|
fveq2d |
|- ( ph -> ( ! ` N ) = ( ! ` sum_ j e. ( 0 ... M ) ( D ` j ) ) ) |
17 |
16
|
oveq1d |
|- ( ph -> ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) = ( ( ! ` sum_ j e. ( 0 ... M ) ( D ` j ) ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) ) |
18 |
|
nfcv |
|- F/_ j D |
19 |
|
fzfid |
|- ( ph -> ( 0 ... M ) e. Fin ) |
20 |
|
nn0ex |
|- NN0 e. _V |
21 |
|
fzssnn0 |
|- ( 0 ... N ) C_ NN0 |
22 |
|
mapss |
|- ( ( NN0 e. _V /\ ( 0 ... N ) C_ NN0 ) -> ( ( 0 ... N ) ^m ( 0 ... M ) ) C_ ( NN0 ^m ( 0 ... M ) ) ) |
23 |
20 21 22
|
mp2an |
|- ( ( 0 ... N ) ^m ( 0 ... M ) ) C_ ( NN0 ^m ( 0 ... M ) ) |
24 |
13
|
simpld |
|- ( ph -> D e. ( ( 0 ... N ) ^m ( 0 ... M ) ) ) |
25 |
23 24
|
sselid |
|- ( ph -> D e. ( NN0 ^m ( 0 ... M ) ) ) |
26 |
18 19 25
|
mccl |
|- ( ph -> ( ( ! ` sum_ j e. ( 0 ... M ) ( D ` j ) ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) e. NN ) |
27 |
17 26
|
eqeltrd |
|- ( ph -> ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) e. NN ) |
28 |
27
|
nnzd |
|- ( ph -> ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) e. ZZ ) |
29 |
|
elmapi |
|- ( D e. ( ( 0 ... N ) ^m ( 0 ... M ) ) -> D : ( 0 ... M ) --> ( 0 ... N ) ) |
30 |
24 29
|
syl |
|- ( ph -> D : ( 0 ... M ) --> ( 0 ... N ) ) |
31 |
1 2 30 4
|
etransclem10 |
|- ( ph -> if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) e. ZZ ) |
32 |
|
fzfid |
|- ( ph -> ( 1 ... M ) e. Fin ) |
33 |
1
|
adantr |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> P e. NN ) |
34 |
30
|
adantr |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> D : ( 0 ... M ) --> ( 0 ... N ) ) |
35 |
|
0z |
|- 0 e. ZZ |
36 |
|
fzp1ss |
|- ( 0 e. ZZ -> ( ( 0 + 1 ) ... M ) C_ ( 0 ... M ) ) |
37 |
35 36
|
ax-mp |
|- ( ( 0 + 1 ) ... M ) C_ ( 0 ... M ) |
38 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
39 |
38
|
oveq1i |
|- ( 1 ... M ) = ( ( 0 + 1 ) ... M ) |
40 |
39
|
eleq2i |
|- ( j e. ( 1 ... M ) <-> j e. ( ( 0 + 1 ) ... M ) ) |
41 |
40
|
biimpi |
|- ( j e. ( 1 ... M ) -> j e. ( ( 0 + 1 ) ... M ) ) |
42 |
37 41
|
sselid |
|- ( j e. ( 1 ... M ) -> j e. ( 0 ... M ) ) |
43 |
42
|
adantl |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> j e. ( 0 ... M ) ) |
44 |
4
|
adantr |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> J e. ZZ ) |
45 |
33 34 43 44
|
etransclem3 |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) e. ZZ ) |
46 |
32 45
|
fprodzcl |
|- ( ph -> prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) e. ZZ ) |
47 |
31 46
|
zmulcld |
|- ( ph -> ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) e. ZZ ) |
48 |
28 47
|
zmulcld |
|- ( ph -> ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) e. ZZ ) |