| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem28.p |  |-  ( ph -> P e. NN ) | 
						
							| 2 |  | etransclem28.m |  |-  ( ph -> M e. NN0 ) | 
						
							| 3 |  | etransclem28.n |  |-  ( ph -> N e. NN0 ) | 
						
							| 4 |  | etransclem28.c |  |-  C = ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } ) | 
						
							| 5 |  | etransclem28.d |  |-  ( ph -> D e. ( C ` N ) ) | 
						
							| 6 |  | etransclem28.j |  |-  ( ph -> J e. ( 0 ... M ) ) | 
						
							| 7 |  | etransclem28.t |  |-  T = ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) | 
						
							| 8 |  | nnm1nn0 |  |-  ( P e. NN -> ( P - 1 ) e. NN0 ) | 
						
							| 9 | 1 8 | syl |  |-  ( ph -> ( P - 1 ) e. NN0 ) | 
						
							| 10 | 9 | faccld |  |-  ( ph -> ( ! ` ( P - 1 ) ) e. NN ) | 
						
							| 11 | 10 | nnzd |  |-  ( ph -> ( ! ` ( P - 1 ) ) e. ZZ ) | 
						
							| 12 | 11 | adantr |  |-  ( ( ph /\ J = 0 ) -> ( ! ` ( P - 1 ) ) e. ZZ ) | 
						
							| 13 | 4 3 | etransclem12 |  |-  ( ph -> ( C ` N ) = { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) | 
						
							| 14 | 5 13 | eleqtrd |  |-  ( ph -> D e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) | 
						
							| 15 |  | fveq1 |  |-  ( c = D -> ( c ` j ) = ( D ` j ) ) | 
						
							| 16 | 15 | sumeq2sdv |  |-  ( c = D -> sum_ j e. ( 0 ... M ) ( c ` j ) = sum_ j e. ( 0 ... M ) ( D ` j ) ) | 
						
							| 17 | 16 | eqeq1d |  |-  ( c = D -> ( sum_ j e. ( 0 ... M ) ( c ` j ) = N <-> sum_ j e. ( 0 ... M ) ( D ` j ) = N ) ) | 
						
							| 18 | 17 | elrab |  |-  ( D e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } <-> ( D e. ( ( 0 ... N ) ^m ( 0 ... M ) ) /\ sum_ j e. ( 0 ... M ) ( D ` j ) = N ) ) | 
						
							| 19 | 18 | simprbi |  |-  ( D e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } -> sum_ j e. ( 0 ... M ) ( D ` j ) = N ) | 
						
							| 20 | 14 19 | syl |  |-  ( ph -> sum_ j e. ( 0 ... M ) ( D ` j ) = N ) | 
						
							| 21 | 20 | eqcomd |  |-  ( ph -> N = sum_ j e. ( 0 ... M ) ( D ` j ) ) | 
						
							| 22 | 21 | fveq2d |  |-  ( ph -> ( ! ` N ) = ( ! ` sum_ j e. ( 0 ... M ) ( D ` j ) ) ) | 
						
							| 23 | 22 | oveq1d |  |-  ( ph -> ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) = ( ( ! ` sum_ j e. ( 0 ... M ) ( D ` j ) ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) ) | 
						
							| 24 |  | nfcv |  |-  F/_ j D | 
						
							| 25 |  | fzfid |  |-  ( ph -> ( 0 ... M ) e. Fin ) | 
						
							| 26 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 27 |  | fzssnn0 |  |-  ( 0 ... N ) C_ NN0 | 
						
							| 28 | 27 | a1i |  |-  ( D e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } -> ( 0 ... N ) C_ NN0 ) | 
						
							| 29 |  | mapss |  |-  ( ( NN0 e. _V /\ ( 0 ... N ) C_ NN0 ) -> ( ( 0 ... N ) ^m ( 0 ... M ) ) C_ ( NN0 ^m ( 0 ... M ) ) ) | 
						
							| 30 | 26 28 29 | sylancr |  |-  ( D e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } -> ( ( 0 ... N ) ^m ( 0 ... M ) ) C_ ( NN0 ^m ( 0 ... M ) ) ) | 
						
							| 31 |  | elrabi |  |-  ( D e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } -> D e. ( ( 0 ... N ) ^m ( 0 ... M ) ) ) | 
						
							| 32 | 30 31 | sseldd |  |-  ( D e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } -> D e. ( NN0 ^m ( 0 ... M ) ) ) | 
						
							| 33 | 14 32 | syl |  |-  ( ph -> D e. ( NN0 ^m ( 0 ... M ) ) ) | 
						
							| 34 | 24 25 33 | mccl |  |-  ( ph -> ( ( ! ` sum_ j e. ( 0 ... M ) ( D ` j ) ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) e. NN ) | 
						
							| 35 | 23 34 | eqeltrd |  |-  ( ph -> ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) e. NN ) | 
						
							| 36 | 35 | nnzd |  |-  ( ph -> ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) e. ZZ ) | 
						
							| 37 | 36 | adantr |  |-  ( ( ph /\ J = 0 ) -> ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) e. ZZ ) | 
						
							| 38 |  | df-neg |  |-  -u j = ( 0 - j ) | 
						
							| 39 |  | oveq1 |  |-  ( J = 0 -> ( J - j ) = ( 0 - j ) ) | 
						
							| 40 | 38 39 | eqtr4id |  |-  ( J = 0 -> -u j = ( J - j ) ) | 
						
							| 41 | 40 | oveq1d |  |-  ( J = 0 -> ( -u j ^ ( P - ( D ` j ) ) ) = ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) | 
						
							| 42 | 41 | oveq2d |  |-  ( J = 0 -> ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( -u j ^ ( P - ( D ` j ) ) ) ) = ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) | 
						
							| 43 | 42 | ifeq2d |  |-  ( J = 0 -> if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( -u j ^ ( P - ( D ` j ) ) ) ) ) = if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) | 
						
							| 44 | 43 | prodeq2ad |  |-  ( J = 0 -> prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( -u j ^ ( P - ( D ` j ) ) ) ) ) = prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) | 
						
							| 45 | 44 | adantl |  |-  ( ( ph /\ J = 0 ) -> prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( -u j ^ ( P - ( D ` j ) ) ) ) ) = prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) | 
						
							| 46 | 14 31 | syl |  |-  ( ph -> D e. ( ( 0 ... N ) ^m ( 0 ... M ) ) ) | 
						
							| 47 |  | elmapi |  |-  ( D e. ( ( 0 ... N ) ^m ( 0 ... M ) ) -> D : ( 0 ... M ) --> ( 0 ... N ) ) | 
						
							| 48 | 46 47 | syl |  |-  ( ph -> D : ( 0 ... M ) --> ( 0 ... N ) ) | 
						
							| 49 | 1 48 6 | etransclem7 |  |-  ( ph -> prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) e. ZZ ) | 
						
							| 50 | 49 | adantr |  |-  ( ( ph /\ J = 0 ) -> prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) e. ZZ ) | 
						
							| 51 | 45 50 | eqeltrd |  |-  ( ( ph /\ J = 0 ) -> prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( -u j ^ ( P - ( D ` j ) ) ) ) ) e. ZZ ) | 
						
							| 52 | 12 51 | zmulcld |  |-  ( ( ph /\ J = 0 ) -> ( ( ! ` ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( -u j ^ ( P - ( D ` j ) ) ) ) ) ) e. ZZ ) | 
						
							| 53 | 12 37 52 | 3jca |  |-  ( ( ph /\ J = 0 ) -> ( ( ! ` ( P - 1 ) ) e. ZZ /\ ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) e. ZZ /\ ( ( ! ` ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( -u j ^ ( P - ( D ` j ) ) ) ) ) ) e. ZZ ) ) | 
						
							| 54 |  | dvdsmul1 |  |-  ( ( ( ! ` ( P - 1 ) ) e. ZZ /\ prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( -u j ^ ( P - ( D ` j ) ) ) ) ) e. ZZ ) -> ( ! ` ( P - 1 ) ) || ( ( ! ` ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( -u j ^ ( P - ( D ` j ) ) ) ) ) ) ) | 
						
							| 55 | 12 51 54 | syl2anc |  |-  ( ( ph /\ J = 0 ) -> ( ! ` ( P - 1 ) ) || ( ( ! ` ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( -u j ^ ( P - ( D ` j ) ) ) ) ) ) ) | 
						
							| 56 |  | dvdsmultr2 |  |-  ( ( ( ! ` ( P - 1 ) ) e. ZZ /\ ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) e. ZZ /\ ( ( ! ` ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( -u j ^ ( P - ( D ` j ) ) ) ) ) ) e. ZZ ) -> ( ( ! ` ( P - 1 ) ) || ( ( ! ` ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( -u j ^ ( P - ( D ` j ) ) ) ) ) ) -> ( ! ` ( P - 1 ) ) || ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( ( ! ` ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( -u j ^ ( P - ( D ` j ) ) ) ) ) ) ) ) ) | 
						
							| 57 | 53 55 56 | sylc |  |-  ( ( ph /\ J = 0 ) -> ( ! ` ( P - 1 ) ) || ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( ( ! ` ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( -u j ^ ( P - ( D ` j ) ) ) ) ) ) ) ) | 
						
							| 58 | 57 | adantr |  |-  ( ( ( ph /\ J = 0 ) /\ ( D ` 0 ) = ( P - 1 ) ) -> ( ! ` ( P - 1 ) ) || ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( ( ! ` ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( -u j ^ ( P - ( D ` j ) ) ) ) ) ) ) ) | 
						
							| 59 | 1 | ad2antrr |  |-  ( ( ( ph /\ J = 0 ) /\ ( D ` 0 ) = ( P - 1 ) ) -> P e. NN ) | 
						
							| 60 | 2 | ad2antrr |  |-  ( ( ( ph /\ J = 0 ) /\ ( D ` 0 ) = ( P - 1 ) ) -> M e. NN0 ) | 
						
							| 61 | 48 | ad2antrr |  |-  ( ( ( ph /\ J = 0 ) /\ ( D ` 0 ) = ( P - 1 ) ) -> D : ( 0 ... M ) --> ( 0 ... N ) ) | 
						
							| 62 |  | eqid |  |-  ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) = ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) | 
						
							| 63 |  | simplr |  |-  ( ( ( ph /\ J = 0 ) /\ ( D ` 0 ) = ( P - 1 ) ) -> J = 0 ) | 
						
							| 64 |  | simpr |  |-  ( ( ( ph /\ J = 0 ) /\ ( D ` 0 ) = ( P - 1 ) ) -> ( D ` 0 ) = ( P - 1 ) ) | 
						
							| 65 | 59 60 61 62 63 64 | etransclem14 |  |-  ( ( ( ph /\ J = 0 ) /\ ( D ` 0 ) = ( P - 1 ) ) -> ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) = ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( ( ! ` ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( -u j ^ ( P - ( D ` j ) ) ) ) ) ) ) ) | 
						
							| 66 | 58 65 | breqtrrd |  |-  ( ( ( ph /\ J = 0 ) /\ ( D ` 0 ) = ( P - 1 ) ) -> ( ! ` ( P - 1 ) ) || ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) ) | 
						
							| 67 |  | dvds0 |  |-  ( ( ! ` ( P - 1 ) ) e. ZZ -> ( ! ` ( P - 1 ) ) || 0 ) | 
						
							| 68 | 11 67 | syl |  |-  ( ph -> ( ! ` ( P - 1 ) ) || 0 ) | 
						
							| 69 | 68 | ad2antrr |  |-  ( ( ( ph /\ J = 0 ) /\ -. ( D ` 0 ) = ( P - 1 ) ) -> ( ! ` ( P - 1 ) ) || 0 ) | 
						
							| 70 | 1 | ad2antrr |  |-  ( ( ( ph /\ J = 0 ) /\ -. ( D ` 0 ) = ( P - 1 ) ) -> P e. NN ) | 
						
							| 71 | 2 | ad2antrr |  |-  ( ( ( ph /\ J = 0 ) /\ -. ( D ` 0 ) = ( P - 1 ) ) -> M e. NN0 ) | 
						
							| 72 | 3 | ad2antrr |  |-  ( ( ( ph /\ J = 0 ) /\ -. ( D ` 0 ) = ( P - 1 ) ) -> N e. NN0 ) | 
						
							| 73 | 48 | ad2antrr |  |-  ( ( ( ph /\ J = 0 ) /\ -. ( D ` 0 ) = ( P - 1 ) ) -> D : ( 0 ... M ) --> ( 0 ... N ) ) | 
						
							| 74 |  | simplr |  |-  ( ( ( ph /\ J = 0 ) /\ -. ( D ` 0 ) = ( P - 1 ) ) -> J = 0 ) | 
						
							| 75 |  | neqne |  |-  ( -. ( D ` 0 ) = ( P - 1 ) -> ( D ` 0 ) =/= ( P - 1 ) ) | 
						
							| 76 | 75 | adantl |  |-  ( ( ( ph /\ J = 0 ) /\ -. ( D ` 0 ) = ( P - 1 ) ) -> ( D ` 0 ) =/= ( P - 1 ) ) | 
						
							| 77 | 70 71 72 73 62 74 76 | etransclem15 |  |-  ( ( ( ph /\ J = 0 ) /\ -. ( D ` 0 ) = ( P - 1 ) ) -> ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) = 0 ) | 
						
							| 78 | 69 77 | breqtrrd |  |-  ( ( ( ph /\ J = 0 ) /\ -. ( D ` 0 ) = ( P - 1 ) ) -> ( ! ` ( P - 1 ) ) || ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) ) | 
						
							| 79 | 66 78 | pm2.61dan |  |-  ( ( ph /\ J = 0 ) -> ( ! ` ( P - 1 ) ) || ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) ) | 
						
							| 80 | 1 | nnzd |  |-  ( ph -> P e. ZZ ) | 
						
							| 81 |  | elfznn0 |  |-  ( J e. ( 0 ... M ) -> J e. NN0 ) | 
						
							| 82 | 6 81 | syl |  |-  ( ph -> J e. NN0 ) | 
						
							| 83 | 82 | nn0zd |  |-  ( ph -> J e. ZZ ) | 
						
							| 84 | 1 2 3 83 4 5 | etransclem26 |  |-  ( ph -> ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) e. ZZ ) | 
						
							| 85 | 11 80 84 | 3jca |  |-  ( ph -> ( ( ! ` ( P - 1 ) ) e. ZZ /\ P e. ZZ /\ ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) e. ZZ ) ) | 
						
							| 86 | 85 | adantr |  |-  ( ( ph /\ -. J = 0 ) -> ( ( ! ` ( P - 1 ) ) e. ZZ /\ P e. ZZ /\ ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) e. ZZ ) ) | 
						
							| 87 | 1 | nncnd |  |-  ( ph -> P e. CC ) | 
						
							| 88 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 89 | 87 88 | npcand |  |-  ( ph -> ( ( P - 1 ) + 1 ) = P ) | 
						
							| 90 | 89 | eqcomd |  |-  ( ph -> P = ( ( P - 1 ) + 1 ) ) | 
						
							| 91 | 90 | fveq2d |  |-  ( ph -> ( ! ` P ) = ( ! ` ( ( P - 1 ) + 1 ) ) ) | 
						
							| 92 |  | facp1 |  |-  ( ( P - 1 ) e. NN0 -> ( ! ` ( ( P - 1 ) + 1 ) ) = ( ( ! ` ( P - 1 ) ) x. ( ( P - 1 ) + 1 ) ) ) | 
						
							| 93 | 9 92 | syl |  |-  ( ph -> ( ! ` ( ( P - 1 ) + 1 ) ) = ( ( ! ` ( P - 1 ) ) x. ( ( P - 1 ) + 1 ) ) ) | 
						
							| 94 | 89 | oveq2d |  |-  ( ph -> ( ( ! ` ( P - 1 ) ) x. ( ( P - 1 ) + 1 ) ) = ( ( ! ` ( P - 1 ) ) x. P ) ) | 
						
							| 95 | 91 93 94 | 3eqtrrd |  |-  ( ph -> ( ( ! ` ( P - 1 ) ) x. P ) = ( ! ` P ) ) | 
						
							| 96 | 95 | adantr |  |-  ( ( ph /\ -. J = 0 ) -> ( ( ! ` ( P - 1 ) ) x. P ) = ( ! ` P ) ) | 
						
							| 97 | 1 | adantr |  |-  ( ( ph /\ -. J = 0 ) -> P e. NN ) | 
						
							| 98 | 2 | adantr |  |-  ( ( ph /\ -. J = 0 ) -> M e. NN0 ) | 
						
							| 99 | 3 | adantr |  |-  ( ( ph /\ -. J = 0 ) -> N e. NN0 ) | 
						
							| 100 | 48 | adantr |  |-  ( ( ph /\ -. J = 0 ) -> D : ( 0 ... M ) --> ( 0 ... N ) ) | 
						
							| 101 | 20 | adantr |  |-  ( ( ph /\ -. J = 0 ) -> sum_ j e. ( 0 ... M ) ( D ` j ) = N ) | 
						
							| 102 |  | 1zzd |  |-  ( ( ph /\ -. J = 0 ) -> 1 e. ZZ ) | 
						
							| 103 | 2 | nn0zd |  |-  ( ph -> M e. ZZ ) | 
						
							| 104 | 103 | adantr |  |-  ( ( ph /\ -. J = 0 ) -> M e. ZZ ) | 
						
							| 105 | 83 | adantr |  |-  ( ( ph /\ -. J = 0 ) -> J e. ZZ ) | 
						
							| 106 | 82 | adantr |  |-  ( ( ph /\ -. J = 0 ) -> J e. NN0 ) | 
						
							| 107 |  | neqne |  |-  ( -. J = 0 -> J =/= 0 ) | 
						
							| 108 | 107 | adantl |  |-  ( ( ph /\ -. J = 0 ) -> J =/= 0 ) | 
						
							| 109 |  | elnnne0 |  |-  ( J e. NN <-> ( J e. NN0 /\ J =/= 0 ) ) | 
						
							| 110 | 106 108 109 | sylanbrc |  |-  ( ( ph /\ -. J = 0 ) -> J e. NN ) | 
						
							| 111 | 110 | nnge1d |  |-  ( ( ph /\ -. J = 0 ) -> 1 <_ J ) | 
						
							| 112 |  | elfzle2 |  |-  ( J e. ( 0 ... M ) -> J <_ M ) | 
						
							| 113 | 6 112 | syl |  |-  ( ph -> J <_ M ) | 
						
							| 114 | 113 | adantr |  |-  ( ( ph /\ -. J = 0 ) -> J <_ M ) | 
						
							| 115 | 102 104 105 111 114 | elfzd |  |-  ( ( ph /\ -. J = 0 ) -> J e. ( 1 ... M ) ) | 
						
							| 116 | 97 98 99 100 101 62 115 | etransclem25 |  |-  ( ( ph /\ -. J = 0 ) -> ( ! ` P ) || ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) ) | 
						
							| 117 | 96 116 | eqbrtrd |  |-  ( ( ph /\ -. J = 0 ) -> ( ( ! ` ( P - 1 ) ) x. P ) || ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) ) | 
						
							| 118 |  | muldvds1 |  |-  ( ( ( ! ` ( P - 1 ) ) e. ZZ /\ P e. ZZ /\ ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) e. ZZ ) -> ( ( ( ! ` ( P - 1 ) ) x. P ) || ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) -> ( ! ` ( P - 1 ) ) || ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) ) ) | 
						
							| 119 | 86 117 118 | sylc |  |-  ( ( ph /\ -. J = 0 ) -> ( ! ` ( P - 1 ) ) || ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) ) | 
						
							| 120 | 79 119 | pm2.61dan |  |-  ( ph -> ( ! ` ( P - 1 ) ) || ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( D ` j ) ) ) x. ( if ( ( P - 1 ) < ( D ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( D ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( D ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( D ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( D ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( D ` j ) ) ) ) ) ) ) ) | 
						
							| 121 | 120 7 | breqtrrdi |  |-  ( ph -> ( ! ` ( P - 1 ) ) || T ) |