Step |
Hyp |
Ref |
Expression |
1 |
|
etranslemdvnf2lemlem.s |
|- ( ph -> S e. { RR , CC } ) |
2 |
|
etransclem29.a |
|- ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) |
3 |
|
etransclem29.p |
|- ( ph -> P e. NN ) |
4 |
|
etransclem29.m |
|- ( ph -> M e. NN0 ) |
5 |
|
etransclem29.f |
|- F = ( x e. X |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) |
6 |
|
etransclem29.n |
|- ( ph -> N e. NN0 ) |
7 |
|
etransclem29.h |
|- H = ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) |
8 |
|
etransclem29.c |
|- C = ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } ) |
9 |
|
etransclem29.e |
|- E = ( x e. X |-> prod_ j e. ( 0 ... M ) ( ( H ` j ) ` x ) ) |
10 |
1 2
|
dvdmsscn |
|- ( ph -> X C_ CC ) |
11 |
10 3 4 5 7 9
|
etransclem4 |
|- ( ph -> F = E ) |
12 |
11
|
oveq2d |
|- ( ph -> ( S Dn F ) = ( S Dn E ) ) |
13 |
12
|
fveq1d |
|- ( ph -> ( ( S Dn F ) ` N ) = ( ( S Dn E ) ` N ) ) |
14 |
|
fzfid |
|- ( ph -> ( 0 ... M ) e. Fin ) |
15 |
10
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> X C_ CC ) |
16 |
3
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> P e. NN ) |
17 |
|
simpr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> j e. ( 0 ... M ) ) |
18 |
15 16 7 17
|
etransclem1 |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( H ` j ) : X --> CC ) |
19 |
1
|
3ad2ant1 |
|- ( ( ph /\ j e. ( 0 ... M ) /\ i e. ( 0 ... N ) ) -> S e. { RR , CC } ) |
20 |
2
|
3ad2ant1 |
|- ( ( ph /\ j e. ( 0 ... M ) /\ i e. ( 0 ... N ) ) -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) |
21 |
3
|
3ad2ant1 |
|- ( ( ph /\ j e. ( 0 ... M ) /\ i e. ( 0 ... N ) ) -> P e. NN ) |
22 |
|
etransclem5 |
|- ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) = ( k e. ( 0 ... M ) |-> ( y e. X |-> ( ( y - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) ) |
23 |
7 22
|
eqtri |
|- H = ( k e. ( 0 ... M ) |-> ( y e. X |-> ( ( y - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) ) |
24 |
|
simp2 |
|- ( ( ph /\ j e. ( 0 ... M ) /\ i e. ( 0 ... N ) ) -> j e. ( 0 ... M ) ) |
25 |
|
elfznn0 |
|- ( i e. ( 0 ... N ) -> i e. NN0 ) |
26 |
25
|
3ad2ant3 |
|- ( ( ph /\ j e. ( 0 ... M ) /\ i e. ( 0 ... N ) ) -> i e. NN0 ) |
27 |
19 20 21 23 24 26
|
etransclem20 |
|- ( ( ph /\ j e. ( 0 ... M ) /\ i e. ( 0 ... N ) ) -> ( ( S Dn ( H ` j ) ) ` i ) : X --> CC ) |
28 |
1 2 14 18 6 27 9 8
|
dvnprod |
|- ( ph -> ( ( S Dn E ) ` N ) = ( x e. X |-> sum_ c e. ( C ` N ) ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. prod_ j e. ( 0 ... M ) ( ( ( S Dn ( H ` j ) ) ` ( c ` j ) ) ` x ) ) ) ) |
29 |
13 28
|
eqtrd |
|- ( ph -> ( ( S Dn F ) ` N ) = ( x e. X |-> sum_ c e. ( C ` N ) ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. prod_ j e. ( 0 ... M ) ( ( ( S Dn ( H ` j ) ) ` ( c ` j ) ) ` x ) ) ) ) |