Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem3.n |
|- ( ph -> P e. NN ) |
2 |
|
etransclem3.c |
|- ( ph -> C : ( 0 ... M ) --> ( 0 ... N ) ) |
3 |
|
etransclem3.j |
|- ( ph -> J e. ( 0 ... M ) ) |
4 |
|
etransclem3.4 |
|- ( ph -> K e. ZZ ) |
5 |
|
0zd |
|- ( ( ph /\ P < ( C ` J ) ) -> 0 e. ZZ ) |
6 |
|
0zd |
|- ( ( ph /\ -. P < ( C ` J ) ) -> 0 e. ZZ ) |
7 |
1
|
nnzd |
|- ( ph -> P e. ZZ ) |
8 |
7
|
adantr |
|- ( ( ph /\ -. P < ( C ` J ) ) -> P e. ZZ ) |
9 |
2 3
|
ffvelrnd |
|- ( ph -> ( C ` J ) e. ( 0 ... N ) ) |
10 |
9
|
elfzelzd |
|- ( ph -> ( C ` J ) e. ZZ ) |
11 |
7 10
|
zsubcld |
|- ( ph -> ( P - ( C ` J ) ) e. ZZ ) |
12 |
11
|
adantr |
|- ( ( ph /\ -. P < ( C ` J ) ) -> ( P - ( C ` J ) ) e. ZZ ) |
13 |
10
|
zred |
|- ( ph -> ( C ` J ) e. RR ) |
14 |
13
|
adantr |
|- ( ( ph /\ -. P < ( C ` J ) ) -> ( C ` J ) e. RR ) |
15 |
8
|
zred |
|- ( ( ph /\ -. P < ( C ` J ) ) -> P e. RR ) |
16 |
|
simpr |
|- ( ( ph /\ -. P < ( C ` J ) ) -> -. P < ( C ` J ) ) |
17 |
14 15 16
|
nltled |
|- ( ( ph /\ -. P < ( C ` J ) ) -> ( C ` J ) <_ P ) |
18 |
15 14
|
subge0d |
|- ( ( ph /\ -. P < ( C ` J ) ) -> ( 0 <_ ( P - ( C ` J ) ) <-> ( C ` J ) <_ P ) ) |
19 |
17 18
|
mpbird |
|- ( ( ph /\ -. P < ( C ` J ) ) -> 0 <_ ( P - ( C ` J ) ) ) |
20 |
|
elfzle1 |
|- ( ( C ` J ) e. ( 0 ... N ) -> 0 <_ ( C ` J ) ) |
21 |
9 20
|
syl |
|- ( ph -> 0 <_ ( C ` J ) ) |
22 |
1
|
nnred |
|- ( ph -> P e. RR ) |
23 |
22 13
|
subge02d |
|- ( ph -> ( 0 <_ ( C ` J ) <-> ( P - ( C ` J ) ) <_ P ) ) |
24 |
21 23
|
mpbid |
|- ( ph -> ( P - ( C ` J ) ) <_ P ) |
25 |
24
|
adantr |
|- ( ( ph /\ -. P < ( C ` J ) ) -> ( P - ( C ` J ) ) <_ P ) |
26 |
6 8 12 19 25
|
elfzd |
|- ( ( ph /\ -. P < ( C ` J ) ) -> ( P - ( C ` J ) ) e. ( 0 ... P ) ) |
27 |
|
permnn |
|- ( ( P - ( C ` J ) ) e. ( 0 ... P ) -> ( ( ! ` P ) / ( ! ` ( P - ( C ` J ) ) ) ) e. NN ) |
28 |
26 27
|
syl |
|- ( ( ph /\ -. P < ( C ` J ) ) -> ( ( ! ` P ) / ( ! ` ( P - ( C ` J ) ) ) ) e. NN ) |
29 |
28
|
nnzd |
|- ( ( ph /\ -. P < ( C ` J ) ) -> ( ( ! ` P ) / ( ! ` ( P - ( C ` J ) ) ) ) e. ZZ ) |
30 |
3
|
elfzelzd |
|- ( ph -> J e. ZZ ) |
31 |
4 30
|
zsubcld |
|- ( ph -> ( K - J ) e. ZZ ) |
32 |
31
|
adantr |
|- ( ( ph /\ -. P < ( C ` J ) ) -> ( K - J ) e. ZZ ) |
33 |
|
elnn0z |
|- ( ( P - ( C ` J ) ) e. NN0 <-> ( ( P - ( C ` J ) ) e. ZZ /\ 0 <_ ( P - ( C ` J ) ) ) ) |
34 |
12 19 33
|
sylanbrc |
|- ( ( ph /\ -. P < ( C ` J ) ) -> ( P - ( C ` J ) ) e. NN0 ) |
35 |
|
zexpcl |
|- ( ( ( K - J ) e. ZZ /\ ( P - ( C ` J ) ) e. NN0 ) -> ( ( K - J ) ^ ( P - ( C ` J ) ) ) e. ZZ ) |
36 |
32 34 35
|
syl2anc |
|- ( ( ph /\ -. P < ( C ` J ) ) -> ( ( K - J ) ^ ( P - ( C ` J ) ) ) e. ZZ ) |
37 |
29 36
|
zmulcld |
|- ( ( ph /\ -. P < ( C ` J ) ) -> ( ( ( ! ` P ) / ( ! ` ( P - ( C ` J ) ) ) ) x. ( ( K - J ) ^ ( P - ( C ` J ) ) ) ) e. ZZ ) |
38 |
5 37
|
ifclda |
|- ( ph -> if ( P < ( C ` J ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( C ` J ) ) ) ) x. ( ( K - J ) ^ ( P - ( C ` J ) ) ) ) ) e. ZZ ) |