Description: The N -th derivative of F . (Contributed by Glauco Siliprandi, 5-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | etransclem30.s | |- ( ph -> S e. { RR , CC } ) |
|
etransclem30.a | |- ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) |
||
etransclem30.p | |- ( ph -> P e. NN ) |
||
etransclem30.m | |- ( ph -> M e. NN0 ) |
||
etransclem30.f | |- F = ( x e. X |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) |
||
etransclem30.n | |- ( ph -> N e. NN0 ) |
||
etransclem30.h | |- H = ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) |
||
etransclem30.c | |- C = ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } ) |
||
Assertion | etransclem30 | |- ( ph -> ( ( S Dn F ) ` N ) = ( x e. X |-> sum_ c e. ( C ` N ) ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. prod_ j e. ( 0 ... M ) ( ( ( S Dn ( H ` j ) ) ` ( c ` j ) ) ` x ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | etransclem30.s | |- ( ph -> S e. { RR , CC } ) |
|
2 | etransclem30.a | |- ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) |
|
3 | etransclem30.p | |- ( ph -> P e. NN ) |
|
4 | etransclem30.m | |- ( ph -> M e. NN0 ) |
|
5 | etransclem30.f | |- F = ( x e. X |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) |
|
6 | etransclem30.n | |- ( ph -> N e. NN0 ) |
|
7 | etransclem30.h | |- H = ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) |
|
8 | etransclem30.c | |- C = ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } ) |
|
9 | eqid | |- ( x e. X |-> prod_ j e. ( 0 ... M ) ( ( H ` j ) ` x ) ) = ( x e. X |-> prod_ j e. ( 0 ... M ) ( ( H ` j ) ` x ) ) |
|
10 | 1 2 3 4 5 6 7 8 9 | etransclem29 | |- ( ph -> ( ( S Dn F ) ` N ) = ( x e. X |-> sum_ c e. ( C ` N ) ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. prod_ j e. ( 0 ... M ) ( ( ( S Dn ( H ` j ) ) ` ( c ` j ) ) ` x ) ) ) ) |