| Step |
Hyp |
Ref |
Expression |
| 1 |
|
etransclem32.s |
|- ( ph -> S e. { RR , CC } ) |
| 2 |
|
etransclem32.x |
|- ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) |
| 3 |
|
etransclem32.p |
|- ( ph -> P e. NN ) |
| 4 |
|
etransclem32.m |
|- ( ph -> M e. NN0 ) |
| 5 |
|
etransclem32.f |
|- F = ( x e. X |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) |
| 6 |
|
etransclem32.n |
|- ( ph -> N e. NN0 ) |
| 7 |
|
etransclem32.ngt |
|- ( ph -> ( ( M x. P ) + ( P - 1 ) ) < N ) |
| 8 |
|
etransclem32.h |
|- H = ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) |
| 9 |
|
etransclem11 |
|- ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) = ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } ) |
| 10 |
1 2 3 4 5 6 8 9
|
etransclem30 |
|- ( ph -> ( ( S Dn F ) ` N ) = ( x e. X |-> sum_ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. prod_ j e. ( 0 ... M ) ( ( ( S Dn ( H ` j ) ) ` ( c ` j ) ) ` x ) ) ) ) |
| 11 |
|
simpr |
|- ( ( ph /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) -> c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) |
| 12 |
9 6
|
etransclem12 |
|- ( ph -> ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) = { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) |
| 13 |
12
|
adantr |
|- ( ( ph /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) -> ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) = { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) |
| 14 |
11 13
|
eleqtrd |
|- ( ( ph /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) -> c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) |
| 15 |
14
|
adantlr |
|- ( ( ( ph /\ x e. X ) /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) -> c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) |
| 16 |
|
nfv |
|- F/ k ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) |
| 17 |
|
nfre1 |
|- F/ k E. k e. ( 0 ... M ) if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) |
| 18 |
17
|
nfn |
|- F/ k -. E. k e. ( 0 ... M ) if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) |
| 19 |
16 18
|
nfan |
|- F/ k ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ -. E. k e. ( 0 ... M ) if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) |
| 20 |
|
fzssre |
|- ( 0 ... N ) C_ RR |
| 21 |
|
rabid |
|- ( c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } <-> ( c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) /\ sum_ j e. ( 0 ... M ) ( c ` j ) = N ) ) |
| 22 |
21
|
simplbi |
|- ( c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } -> c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) ) |
| 23 |
|
elmapi |
|- ( c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) -> c : ( 0 ... M ) --> ( 0 ... N ) ) |
| 24 |
22 23
|
syl |
|- ( c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } -> c : ( 0 ... M ) --> ( 0 ... N ) ) |
| 25 |
24
|
adantl |
|- ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) -> c : ( 0 ... M ) --> ( 0 ... N ) ) |
| 26 |
25
|
ffvelcdmda |
|- ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ k e. ( 0 ... M ) ) -> ( c ` k ) e. ( 0 ... N ) ) |
| 27 |
20 26
|
sselid |
|- ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ k e. ( 0 ... M ) ) -> ( c ` k ) e. RR ) |
| 28 |
27
|
adantlr |
|- ( ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ -. E. k e. ( 0 ... M ) if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) /\ k e. ( 0 ... M ) ) -> ( c ` k ) e. RR ) |
| 29 |
|
nnm1nn0 |
|- ( P e. NN -> ( P - 1 ) e. NN0 ) |
| 30 |
3 29
|
syl |
|- ( ph -> ( P - 1 ) e. NN0 ) |
| 31 |
30
|
nn0red |
|- ( ph -> ( P - 1 ) e. RR ) |
| 32 |
3
|
nnred |
|- ( ph -> P e. RR ) |
| 33 |
31 32
|
ifcld |
|- ( ph -> if ( k = 0 , ( P - 1 ) , P ) e. RR ) |
| 34 |
33
|
ad3antrrr |
|- ( ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ -. E. k e. ( 0 ... M ) if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) /\ k e. ( 0 ... M ) ) -> if ( k = 0 , ( P - 1 ) , P ) e. RR ) |
| 35 |
|
ralnex |
|- ( A. k e. ( 0 ... M ) -. if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) <-> -. E. k e. ( 0 ... M ) if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) |
| 36 |
35
|
biimpri |
|- ( -. E. k e. ( 0 ... M ) if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) -> A. k e. ( 0 ... M ) -. if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) |
| 37 |
36
|
r19.21bi |
|- ( ( -. E. k e. ( 0 ... M ) if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) /\ k e. ( 0 ... M ) ) -> -. if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) |
| 38 |
37
|
adantll |
|- ( ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ -. E. k e. ( 0 ... M ) if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) /\ k e. ( 0 ... M ) ) -> -. if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) |
| 39 |
28 34 38
|
nltled |
|- ( ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ -. E. k e. ( 0 ... M ) if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) /\ k e. ( 0 ... M ) ) -> ( c ` k ) <_ if ( k = 0 , ( P - 1 ) , P ) ) |
| 40 |
39
|
ex |
|- ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ -. E. k e. ( 0 ... M ) if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) -> ( k e. ( 0 ... M ) -> ( c ` k ) <_ if ( k = 0 , ( P - 1 ) , P ) ) ) |
| 41 |
19 40
|
ralrimi |
|- ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ -. E. k e. ( 0 ... M ) if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) -> A. k e. ( 0 ... M ) ( c ` k ) <_ if ( k = 0 , ( P - 1 ) , P ) ) |
| 42 |
21
|
simprbi |
|- ( c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } -> sum_ j e. ( 0 ... M ) ( c ` j ) = N ) |
| 43 |
|
fveq2 |
|- ( j = k -> ( c ` j ) = ( c ` k ) ) |
| 44 |
43
|
cbvsumv |
|- sum_ j e. ( 0 ... M ) ( c ` j ) = sum_ k e. ( 0 ... M ) ( c ` k ) |
| 45 |
42 44
|
eqtr3di |
|- ( c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } -> N = sum_ k e. ( 0 ... M ) ( c ` k ) ) |
| 46 |
45
|
ad2antlr |
|- ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ A. k e. ( 0 ... M ) ( c ` k ) <_ if ( k = 0 , ( P - 1 ) , P ) ) -> N = sum_ k e. ( 0 ... M ) ( c ` k ) ) |
| 47 |
|
fveq2 |
|- ( k = h -> ( c ` k ) = ( c ` h ) ) |
| 48 |
47
|
cbvsumv |
|- sum_ k e. ( 0 ... M ) ( c ` k ) = sum_ h e. ( 0 ... M ) ( c ` h ) |
| 49 |
|
fzfid |
|- ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ A. k e. ( 0 ... M ) ( c ` k ) <_ if ( k = 0 , ( P - 1 ) , P ) ) -> ( 0 ... M ) e. Fin ) |
| 50 |
25
|
ffvelcdmda |
|- ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ h e. ( 0 ... M ) ) -> ( c ` h ) e. ( 0 ... N ) ) |
| 51 |
20 50
|
sselid |
|- ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ h e. ( 0 ... M ) ) -> ( c ` h ) e. RR ) |
| 52 |
51
|
adantlr |
|- ( ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ A. k e. ( 0 ... M ) ( c ` k ) <_ if ( k = 0 , ( P - 1 ) , P ) ) /\ h e. ( 0 ... M ) ) -> ( c ` h ) e. RR ) |
| 53 |
31 32
|
ifcld |
|- ( ph -> if ( h = 0 , ( P - 1 ) , P ) e. RR ) |
| 54 |
53
|
ad3antrrr |
|- ( ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ A. k e. ( 0 ... M ) ( c ` k ) <_ if ( k = 0 , ( P - 1 ) , P ) ) /\ h e. ( 0 ... M ) ) -> if ( h = 0 , ( P - 1 ) , P ) e. RR ) |
| 55 |
|
eqeq1 |
|- ( k = h -> ( k = 0 <-> h = 0 ) ) |
| 56 |
55
|
ifbid |
|- ( k = h -> if ( k = 0 , ( P - 1 ) , P ) = if ( h = 0 , ( P - 1 ) , P ) ) |
| 57 |
47 56
|
breq12d |
|- ( k = h -> ( ( c ` k ) <_ if ( k = 0 , ( P - 1 ) , P ) <-> ( c ` h ) <_ if ( h = 0 , ( P - 1 ) , P ) ) ) |
| 58 |
57
|
rspccva |
|- ( ( A. k e. ( 0 ... M ) ( c ` k ) <_ if ( k = 0 , ( P - 1 ) , P ) /\ h e. ( 0 ... M ) ) -> ( c ` h ) <_ if ( h = 0 , ( P - 1 ) , P ) ) |
| 59 |
58
|
adantll |
|- ( ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ A. k e. ( 0 ... M ) ( c ` k ) <_ if ( k = 0 , ( P - 1 ) , P ) ) /\ h e. ( 0 ... M ) ) -> ( c ` h ) <_ if ( h = 0 , ( P - 1 ) , P ) ) |
| 60 |
49 52 54 59
|
fsumle |
|- ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ A. k e. ( 0 ... M ) ( c ` k ) <_ if ( k = 0 , ( P - 1 ) , P ) ) -> sum_ h e. ( 0 ... M ) ( c ` h ) <_ sum_ h e. ( 0 ... M ) if ( h = 0 , ( P - 1 ) , P ) ) |
| 61 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 62 |
4 61
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` 0 ) ) |
| 63 |
3
|
nnnn0d |
|- ( ph -> P e. NN0 ) |
| 64 |
30 63
|
ifcld |
|- ( ph -> if ( h = 0 , ( P - 1 ) , P ) e. NN0 ) |
| 65 |
64
|
adantr |
|- ( ( ph /\ h e. ( 0 ... M ) ) -> if ( h = 0 , ( P - 1 ) , P ) e. NN0 ) |
| 66 |
65
|
nn0cnd |
|- ( ( ph /\ h e. ( 0 ... M ) ) -> if ( h = 0 , ( P - 1 ) , P ) e. CC ) |
| 67 |
|
iftrue |
|- ( h = 0 -> if ( h = 0 , ( P - 1 ) , P ) = ( P - 1 ) ) |
| 68 |
62 66 67
|
fsum1p |
|- ( ph -> sum_ h e. ( 0 ... M ) if ( h = 0 , ( P - 1 ) , P ) = ( ( P - 1 ) + sum_ h e. ( ( 0 + 1 ) ... M ) if ( h = 0 , ( P - 1 ) , P ) ) ) |
| 69 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 70 |
69
|
oveq1i |
|- ( ( 0 + 1 ) ... M ) = ( 1 ... M ) |
| 71 |
70
|
a1i |
|- ( ph -> ( ( 0 + 1 ) ... M ) = ( 1 ... M ) ) |
| 72 |
71
|
sumeq1d |
|- ( ph -> sum_ h e. ( ( 0 + 1 ) ... M ) if ( h = 0 , ( P - 1 ) , P ) = sum_ h e. ( 1 ... M ) if ( h = 0 , ( P - 1 ) , P ) ) |
| 73 |
|
0red |
|- ( h e. ( 1 ... M ) -> 0 e. RR ) |
| 74 |
|
1red |
|- ( h e. ( 1 ... M ) -> 1 e. RR ) |
| 75 |
|
elfzelz |
|- ( h e. ( 1 ... M ) -> h e. ZZ ) |
| 76 |
75
|
zred |
|- ( h e. ( 1 ... M ) -> h e. RR ) |
| 77 |
|
0lt1 |
|- 0 < 1 |
| 78 |
77
|
a1i |
|- ( h e. ( 1 ... M ) -> 0 < 1 ) |
| 79 |
|
elfzle1 |
|- ( h e. ( 1 ... M ) -> 1 <_ h ) |
| 80 |
73 74 76 78 79
|
ltletrd |
|- ( h e. ( 1 ... M ) -> 0 < h ) |
| 81 |
80
|
gt0ne0d |
|- ( h e. ( 1 ... M ) -> h =/= 0 ) |
| 82 |
81
|
neneqd |
|- ( h e. ( 1 ... M ) -> -. h = 0 ) |
| 83 |
82
|
iffalsed |
|- ( h e. ( 1 ... M ) -> if ( h = 0 , ( P - 1 ) , P ) = P ) |
| 84 |
83
|
adantl |
|- ( ( ph /\ h e. ( 1 ... M ) ) -> if ( h = 0 , ( P - 1 ) , P ) = P ) |
| 85 |
84
|
sumeq2dv |
|- ( ph -> sum_ h e. ( 1 ... M ) if ( h = 0 , ( P - 1 ) , P ) = sum_ h e. ( 1 ... M ) P ) |
| 86 |
|
fzfid |
|- ( ph -> ( 1 ... M ) e. Fin ) |
| 87 |
3
|
nncnd |
|- ( ph -> P e. CC ) |
| 88 |
|
fsumconst |
|- ( ( ( 1 ... M ) e. Fin /\ P e. CC ) -> sum_ h e. ( 1 ... M ) P = ( ( # ` ( 1 ... M ) ) x. P ) ) |
| 89 |
86 87 88
|
syl2anc |
|- ( ph -> sum_ h e. ( 1 ... M ) P = ( ( # ` ( 1 ... M ) ) x. P ) ) |
| 90 |
|
hashfz1 |
|- ( M e. NN0 -> ( # ` ( 1 ... M ) ) = M ) |
| 91 |
4 90
|
syl |
|- ( ph -> ( # ` ( 1 ... M ) ) = M ) |
| 92 |
91
|
oveq1d |
|- ( ph -> ( ( # ` ( 1 ... M ) ) x. P ) = ( M x. P ) ) |
| 93 |
89 92
|
eqtrd |
|- ( ph -> sum_ h e. ( 1 ... M ) P = ( M x. P ) ) |
| 94 |
72 85 93
|
3eqtrd |
|- ( ph -> sum_ h e. ( ( 0 + 1 ) ... M ) if ( h = 0 , ( P - 1 ) , P ) = ( M x. P ) ) |
| 95 |
94
|
oveq2d |
|- ( ph -> ( ( P - 1 ) + sum_ h e. ( ( 0 + 1 ) ... M ) if ( h = 0 , ( P - 1 ) , P ) ) = ( ( P - 1 ) + ( M x. P ) ) ) |
| 96 |
30
|
nn0cnd |
|- ( ph -> ( P - 1 ) e. CC ) |
| 97 |
4 63
|
nn0mulcld |
|- ( ph -> ( M x. P ) e. NN0 ) |
| 98 |
97
|
nn0cnd |
|- ( ph -> ( M x. P ) e. CC ) |
| 99 |
96 98
|
addcomd |
|- ( ph -> ( ( P - 1 ) + ( M x. P ) ) = ( ( M x. P ) + ( P - 1 ) ) ) |
| 100 |
68 95 99
|
3eqtrd |
|- ( ph -> sum_ h e. ( 0 ... M ) if ( h = 0 , ( P - 1 ) , P ) = ( ( M x. P ) + ( P - 1 ) ) ) |
| 101 |
100
|
ad2antrr |
|- ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ A. k e. ( 0 ... M ) ( c ` k ) <_ if ( k = 0 , ( P - 1 ) , P ) ) -> sum_ h e. ( 0 ... M ) if ( h = 0 , ( P - 1 ) , P ) = ( ( M x. P ) + ( P - 1 ) ) ) |
| 102 |
60 101
|
breqtrd |
|- ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ A. k e. ( 0 ... M ) ( c ` k ) <_ if ( k = 0 , ( P - 1 ) , P ) ) -> sum_ h e. ( 0 ... M ) ( c ` h ) <_ ( ( M x. P ) + ( P - 1 ) ) ) |
| 103 |
48 102
|
eqbrtrid |
|- ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ A. k e. ( 0 ... M ) ( c ` k ) <_ if ( k = 0 , ( P - 1 ) , P ) ) -> sum_ k e. ( 0 ... M ) ( c ` k ) <_ ( ( M x. P ) + ( P - 1 ) ) ) |
| 104 |
46 103
|
eqbrtrd |
|- ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ A. k e. ( 0 ... M ) ( c ` k ) <_ if ( k = 0 , ( P - 1 ) , P ) ) -> N <_ ( ( M x. P ) + ( P - 1 ) ) ) |
| 105 |
41 104
|
syldan |
|- ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ -. E. k e. ( 0 ... M ) if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) -> N <_ ( ( M x. P ) + ( P - 1 ) ) ) |
| 106 |
97 30
|
nn0addcld |
|- ( ph -> ( ( M x. P ) + ( P - 1 ) ) e. NN0 ) |
| 107 |
106
|
nn0red |
|- ( ph -> ( ( M x. P ) + ( P - 1 ) ) e. RR ) |
| 108 |
6
|
nn0red |
|- ( ph -> N e. RR ) |
| 109 |
107 108
|
ltnled |
|- ( ph -> ( ( ( M x. P ) + ( P - 1 ) ) < N <-> -. N <_ ( ( M x. P ) + ( P - 1 ) ) ) ) |
| 110 |
7 109
|
mpbid |
|- ( ph -> -. N <_ ( ( M x. P ) + ( P - 1 ) ) ) |
| 111 |
110
|
ad2antrr |
|- ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ -. E. k e. ( 0 ... M ) if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) -> -. N <_ ( ( M x. P ) + ( P - 1 ) ) ) |
| 112 |
105 111
|
condan |
|- ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) -> E. k e. ( 0 ... M ) if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) |
| 113 |
112
|
adantlr |
|- ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) -> E. k e. ( 0 ... M ) if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) |
| 114 |
|
nfv |
|- F/ j ( ph /\ x e. X ) |
| 115 |
|
nfcv |
|- F/_ j ( 0 ... M ) |
| 116 |
115
|
nfsum1 |
|- F/_ j sum_ j e. ( 0 ... M ) ( c ` j ) |
| 117 |
116
|
nfeq1 |
|- F/ j sum_ j e. ( 0 ... M ) ( c ` j ) = N |
| 118 |
|
nfcv |
|- F/_ j ( ( 0 ... N ) ^m ( 0 ... M ) ) |
| 119 |
117 118
|
nfrabw |
|- F/_ j { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } |
| 120 |
119
|
nfcri |
|- F/ j c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } |
| 121 |
114 120
|
nfan |
|- F/ j ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) |
| 122 |
|
nfv |
|- F/ j k e. ( 0 ... M ) |
| 123 |
|
nfv |
|- F/ j if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) |
| 124 |
121 122 123
|
nf3an |
|- F/ j ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ k e. ( 0 ... M ) /\ if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) |
| 125 |
|
nfcv |
|- F/_ j ( ( ( S Dn ( H ` k ) ) ` ( c ` k ) ) ` x ) |
| 126 |
|
fzfid |
|- ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ k e. ( 0 ... M ) /\ if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) -> ( 0 ... M ) e. Fin ) |
| 127 |
1
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ j e. ( 0 ... M ) ) -> S e. { RR , CC } ) |
| 128 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ j e. ( 0 ... M ) ) -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) |
| 129 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ j e. ( 0 ... M ) ) -> P e. NN ) |
| 130 |
|
etransclem5 |
|- ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) = ( k e. ( 0 ... M ) |-> ( y e. X |-> ( ( y - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) ) |
| 131 |
8 130
|
eqtri |
|- H = ( k e. ( 0 ... M ) |-> ( y e. X |-> ( ( y - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) ) |
| 132 |
|
simpr |
|- ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ j e. ( 0 ... M ) ) -> j e. ( 0 ... M ) ) |
| 133 |
24
|
ad2antlr |
|- ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ j e. ( 0 ... M ) ) -> c : ( 0 ... M ) --> ( 0 ... N ) ) |
| 134 |
|
simpr |
|- ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ j e. ( 0 ... M ) ) -> j e. ( 0 ... M ) ) |
| 135 |
133 134
|
ffvelcdmd |
|- ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ j e. ( 0 ... M ) ) -> ( c ` j ) e. ( 0 ... N ) ) |
| 136 |
135
|
adantllr |
|- ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ j e. ( 0 ... M ) ) -> ( c ` j ) e. ( 0 ... N ) ) |
| 137 |
|
elfznn0 |
|- ( ( c ` j ) e. ( 0 ... N ) -> ( c ` j ) e. NN0 ) |
| 138 |
136 137
|
syl |
|- ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ j e. ( 0 ... M ) ) -> ( c ` j ) e. NN0 ) |
| 139 |
127 128 129 131 132 138
|
etransclem20 |
|- ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ j e. ( 0 ... M ) ) -> ( ( S Dn ( H ` j ) ) ` ( c ` j ) ) : X --> CC ) |
| 140 |
|
simpllr |
|- ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ j e. ( 0 ... M ) ) -> x e. X ) |
| 141 |
139 140
|
ffvelcdmd |
|- ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ j e. ( 0 ... M ) ) -> ( ( ( S Dn ( H ` j ) ) ` ( c ` j ) ) ` x ) e. CC ) |
| 142 |
141
|
3ad2antl1 |
|- ( ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ k e. ( 0 ... M ) /\ if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( S Dn ( H ` j ) ) ` ( c ` j ) ) ` x ) e. CC ) |
| 143 |
|
fveq2 |
|- ( j = k -> ( H ` j ) = ( H ` k ) ) |
| 144 |
143
|
oveq2d |
|- ( j = k -> ( S Dn ( H ` j ) ) = ( S Dn ( H ` k ) ) ) |
| 145 |
144 43
|
fveq12d |
|- ( j = k -> ( ( S Dn ( H ` j ) ) ` ( c ` j ) ) = ( ( S Dn ( H ` k ) ) ` ( c ` k ) ) ) |
| 146 |
145
|
fveq1d |
|- ( j = k -> ( ( ( S Dn ( H ` j ) ) ` ( c ` j ) ) ` x ) = ( ( ( S Dn ( H ` k ) ) ` ( c ` k ) ) ` x ) ) |
| 147 |
|
simp2 |
|- ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ k e. ( 0 ... M ) /\ if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) -> k e. ( 0 ... M ) ) |
| 148 |
1
|
ad2antrr |
|- ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) -> S e. { RR , CC } ) |
| 149 |
148
|
3ad2ant1 |
|- ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ k e. ( 0 ... M ) /\ if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) -> S e. { RR , CC } ) |
| 150 |
2
|
ad2antrr |
|- ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) |
| 151 |
150
|
3ad2ant1 |
|- ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ k e. ( 0 ... M ) /\ if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) |
| 152 |
3
|
ad2antrr |
|- ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) -> P e. NN ) |
| 153 |
152
|
3ad2ant1 |
|- ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ k e. ( 0 ... M ) /\ if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) -> P e. NN ) |
| 154 |
|
etransclem5 |
|- ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) = ( h e. ( 0 ... M ) |-> ( y e. X |-> ( ( y - h ) ^ if ( h = 0 , ( P - 1 ) , P ) ) ) ) |
| 155 |
8 154
|
eqtri |
|- H = ( h e. ( 0 ... M ) |-> ( y e. X |-> ( ( y - h ) ^ if ( h = 0 , ( P - 1 ) , P ) ) ) ) |
| 156 |
26
|
elfzelzd |
|- ( ( ( ph /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ k e. ( 0 ... M ) ) -> ( c ` k ) e. ZZ ) |
| 157 |
156
|
adantllr |
|- ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ k e. ( 0 ... M ) ) -> ( c ` k ) e. ZZ ) |
| 158 |
157
|
3adant3 |
|- ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ k e. ( 0 ... M ) /\ if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) -> ( c ` k ) e. ZZ ) |
| 159 |
|
simp3 |
|- ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ k e. ( 0 ... M ) /\ if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) -> if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) |
| 160 |
149 151 153 155 147 158 159
|
etransclem19 |
|- ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ k e. ( 0 ... M ) /\ if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) -> ( ( S Dn ( H ` k ) ) ` ( c ` k ) ) = ( y e. X |-> 0 ) ) |
| 161 |
|
eqidd |
|- ( ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ k e. ( 0 ... M ) /\ if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) /\ y = x ) -> 0 = 0 ) |
| 162 |
|
simp1lr |
|- ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ k e. ( 0 ... M ) /\ if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) -> x e. X ) |
| 163 |
|
0red |
|- ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ k e. ( 0 ... M ) /\ if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) -> 0 e. RR ) |
| 164 |
160 161 162 163
|
fvmptd |
|- ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ k e. ( 0 ... M ) /\ if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) -> ( ( ( S Dn ( H ` k ) ) ` ( c ` k ) ) ` x ) = 0 ) |
| 165 |
124 125 126 142 146 147 164
|
fprod0 |
|- ( ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) /\ k e. ( 0 ... M ) /\ if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) ) -> prod_ j e. ( 0 ... M ) ( ( ( S Dn ( H ` j ) ) ` ( c ` j ) ) ` x ) = 0 ) |
| 166 |
165
|
rexlimdv3a |
|- ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) -> ( E. k e. ( 0 ... M ) if ( k = 0 , ( P - 1 ) , P ) < ( c ` k ) -> prod_ j e. ( 0 ... M ) ( ( ( S Dn ( H ` j ) ) ` ( c ` j ) ) ` x ) = 0 ) ) |
| 167 |
113 166
|
mpd |
|- ( ( ( ph /\ x e. X ) /\ c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) -> prod_ j e. ( 0 ... M ) ( ( ( S Dn ( H ` j ) ) ` ( c ` j ) ) ` x ) = 0 ) |
| 168 |
15 167
|
syldan |
|- ( ( ( ph /\ x e. X ) /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) -> prod_ j e. ( 0 ... M ) ( ( ( S Dn ( H ` j ) ) ` ( c ` j ) ) ` x ) = 0 ) |
| 169 |
168
|
oveq2d |
|- ( ( ( ph /\ x e. X ) /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) -> ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. prod_ j e. ( 0 ... M ) ( ( ( S Dn ( H ` j ) ) ` ( c ` j ) ) ` x ) ) = ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. 0 ) ) |
| 170 |
6
|
faccld |
|- ( ph -> ( ! ` N ) e. NN ) |
| 171 |
170
|
nncnd |
|- ( ph -> ( ! ` N ) e. CC ) |
| 172 |
171
|
adantr |
|- ( ( ph /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) -> ( ! ` N ) e. CC ) |
| 173 |
|
fzfid |
|- ( ( ph /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) -> ( 0 ... M ) e. Fin ) |
| 174 |
|
simpll |
|- ( ( ( ph /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) /\ j e. ( 0 ... M ) ) -> ph ) |
| 175 |
14
|
adantr |
|- ( ( ( ph /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) /\ j e. ( 0 ... M ) ) -> c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) |
| 176 |
|
simpr |
|- ( ( ( ph /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) /\ j e. ( 0 ... M ) ) -> j e. ( 0 ... M ) ) |
| 177 |
174 175 176 135
|
syl21anc |
|- ( ( ( ph /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) /\ j e. ( 0 ... M ) ) -> ( c ` j ) e. ( 0 ... N ) ) |
| 178 |
177 137
|
syl |
|- ( ( ( ph /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) /\ j e. ( 0 ... M ) ) -> ( c ` j ) e. NN0 ) |
| 179 |
178
|
faccld |
|- ( ( ( ph /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) /\ j e. ( 0 ... M ) ) -> ( ! ` ( c ` j ) ) e. NN ) |
| 180 |
179
|
nncnd |
|- ( ( ( ph /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) /\ j e. ( 0 ... M ) ) -> ( ! ` ( c ` j ) ) e. CC ) |
| 181 |
173 180
|
fprodcl |
|- ( ( ph /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) -> prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) e. CC ) |
| 182 |
179
|
nnne0d |
|- ( ( ( ph /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) /\ j e. ( 0 ... M ) ) -> ( ! ` ( c ` j ) ) =/= 0 ) |
| 183 |
173 180 182
|
fprodn0 |
|- ( ( ph /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) -> prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) =/= 0 ) |
| 184 |
172 181 183
|
divcld |
|- ( ( ph /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) -> ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) e. CC ) |
| 185 |
184
|
mul01d |
|- ( ( ph /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) -> ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. 0 ) = 0 ) |
| 186 |
185
|
adantlr |
|- ( ( ( ph /\ x e. X ) /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) -> ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. 0 ) = 0 ) |
| 187 |
169 186
|
eqtrd |
|- ( ( ( ph /\ x e. X ) /\ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ) -> ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. prod_ j e. ( 0 ... M ) ( ( ( S Dn ( H ` j ) ) ` ( c ` j ) ) ` x ) ) = 0 ) |
| 188 |
187
|
sumeq2dv |
|- ( ( ph /\ x e. X ) -> sum_ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. prod_ j e. ( 0 ... M ) ( ( ( S Dn ( H ` j ) ) ` ( c ` j ) ) ` x ) ) = sum_ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) 0 ) |
| 189 |
|
eqid |
|- ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) = ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) |
| 190 |
189 6
|
etransclem16 |
|- ( ph -> ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) e. Fin ) |
| 191 |
190
|
olcd |
|- ( ph -> ( ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) C_ ( ZZ>= ` A ) \/ ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) e. Fin ) ) |
| 192 |
191
|
adantr |
|- ( ( ph /\ x e. X ) -> ( ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) C_ ( ZZ>= ` A ) \/ ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) e. Fin ) ) |
| 193 |
|
sumz |
|- ( ( ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) C_ ( ZZ>= ` A ) \/ ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) e. Fin ) -> sum_ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) 0 = 0 ) |
| 194 |
192 193
|
syl |
|- ( ( ph /\ x e. X ) -> sum_ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) 0 = 0 ) |
| 195 |
188 194
|
eqtrd |
|- ( ( ph /\ x e. X ) -> sum_ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. prod_ j e. ( 0 ... M ) ( ( ( S Dn ( H ` j ) ) ` ( c ` j ) ) ` x ) ) = 0 ) |
| 196 |
195
|
mpteq2dva |
|- ( ph -> ( x e. X |-> sum_ c e. ( ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) ` N ) ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. prod_ j e. ( 0 ... M ) ( ( ( S Dn ( H ` j ) ) ` ( c ` j ) ) ` x ) ) ) = ( x e. X |-> 0 ) ) |
| 197 |
10 196
|
eqtrd |
|- ( ph -> ( ( S Dn F ) ` N ) = ( x e. X |-> 0 ) ) |