| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem36.s |  |-  ( ph -> S e. { RR , CC } ) | 
						
							| 2 |  | etransclem36.x |  |-  ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) | 
						
							| 3 |  | etransclem36.p |  |-  ( ph -> P e. NN ) | 
						
							| 4 |  | etransclem36.m |  |-  ( ph -> M e. NN0 ) | 
						
							| 5 |  | etransclem36.f |  |-  F = ( x e. X |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) | 
						
							| 6 |  | etransclem36.n |  |-  ( ph -> N e. NN0 ) | 
						
							| 7 |  | etransclem36.h |  |-  H = ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 8 |  | etransclem36.jx |  |-  ( ph -> J e. X ) | 
						
							| 9 |  | etransclem36.jz |  |-  ( ph -> J e. ZZ ) | 
						
							| 10 |  | etransclem36.10 |  |-  C = ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } ) | 
						
							| 11 | 1 2 3 4 5 6 7 10 8 | etransclem31 |  |-  ( ph -> ( ( ( S Dn F ) ` N ) ` J ) = sum_ c e. ( C ` N ) ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) ) | 
						
							| 12 | 10 6 | etransclem16 |  |-  ( ph -> ( C ` N ) e. Fin ) | 
						
							| 13 | 3 | adantr |  |-  ( ( ph /\ c e. ( C ` N ) ) -> P e. NN ) | 
						
							| 14 | 4 | adantr |  |-  ( ( ph /\ c e. ( C ` N ) ) -> M e. NN0 ) | 
						
							| 15 | 6 | adantr |  |-  ( ( ph /\ c e. ( C ` N ) ) -> N e. NN0 ) | 
						
							| 16 | 9 | adantr |  |-  ( ( ph /\ c e. ( C ` N ) ) -> J e. ZZ ) | 
						
							| 17 |  | etransclem11 |  |-  ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } ) = ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) | 
						
							| 18 |  | etransclem11 |  |-  ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) = ( n e. NN0 |-> { e e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( e ` j ) = n } ) | 
						
							| 19 | 10 17 18 | 3eqtri |  |-  C = ( n e. NN0 |-> { e e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( e ` j ) = n } ) | 
						
							| 20 |  | simpr |  |-  ( ( ph /\ c e. ( C ` N ) ) -> c e. ( C ` N ) ) | 
						
							| 21 | 13 14 15 16 19 20 | etransclem26 |  |-  ( ( ph /\ c e. ( C ` N ) ) -> ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) e. ZZ ) | 
						
							| 22 | 12 21 | fsumzcl |  |-  ( ph -> sum_ c e. ( C ` N ) ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) e. ZZ ) | 
						
							| 23 | 11 22 | eqeltrd |  |-  ( ph -> ( ( ( S Dn F ) ` N ) ` J ) e. ZZ ) |