| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem37.s |  |-  ( ph -> S e. { RR , CC } ) | 
						
							| 2 |  | etransclem37.x |  |-  ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) | 
						
							| 3 |  | etransclem37.p |  |-  ( ph -> P e. NN ) | 
						
							| 4 |  | etransclem37.m |  |-  ( ph -> M e. NN0 ) | 
						
							| 5 |  | etransclem37.f |  |-  F = ( x e. X |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) | 
						
							| 6 |  | etransclem37.n |  |-  ( ph -> N e. NN0 ) | 
						
							| 7 |  | etransclem37.h |  |-  H = ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 8 |  | etransclem37.c |  |-  C = ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } ) | 
						
							| 9 |  | etransclem37.9 |  |-  ( ph -> J e. ( 0 ... M ) ) | 
						
							| 10 |  | etransclem37.j |  |-  ( ph -> J e. X ) | 
						
							| 11 | 8 6 | etransclem16 |  |-  ( ph -> ( C ` N ) e. Fin ) | 
						
							| 12 |  | nnm1nn0 |  |-  ( P e. NN -> ( P - 1 ) e. NN0 ) | 
						
							| 13 | 3 12 | syl |  |-  ( ph -> ( P - 1 ) e. NN0 ) | 
						
							| 14 | 13 | faccld |  |-  ( ph -> ( ! ` ( P - 1 ) ) e. NN ) | 
						
							| 15 | 14 | nnzd |  |-  ( ph -> ( ! ` ( P - 1 ) ) e. ZZ ) | 
						
							| 16 | 8 6 | etransclem12 |  |-  ( ph -> ( C ` N ) = { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) | 
						
							| 17 | 16 | eleq2d |  |-  ( ph -> ( c e. ( C ` N ) <-> c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) ) | 
						
							| 18 | 17 | biimpa |  |-  ( ( ph /\ c e. ( C ` N ) ) -> c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } ) | 
						
							| 19 |  | rabid |  |-  ( c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } <-> ( c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) /\ sum_ j e. ( 0 ... M ) ( c ` j ) = N ) ) | 
						
							| 20 | 19 | biimpi |  |-  ( c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } -> ( c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) /\ sum_ j e. ( 0 ... M ) ( c ` j ) = N ) ) | 
						
							| 21 | 20 | simprd |  |-  ( c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } -> sum_ j e. ( 0 ... M ) ( c ` j ) = N ) | 
						
							| 22 | 18 21 | syl |  |-  ( ( ph /\ c e. ( C ` N ) ) -> sum_ j e. ( 0 ... M ) ( c ` j ) = N ) | 
						
							| 23 | 22 | eqcomd |  |-  ( ( ph /\ c e. ( C ` N ) ) -> N = sum_ j e. ( 0 ... M ) ( c ` j ) ) | 
						
							| 24 | 23 | fveq2d |  |-  ( ( ph /\ c e. ( C ` N ) ) -> ( ! ` N ) = ( ! ` sum_ j e. ( 0 ... M ) ( c ` j ) ) ) | 
						
							| 25 | 24 | oveq1d |  |-  ( ( ph /\ c e. ( C ` N ) ) -> ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) = ( ( ! ` sum_ j e. ( 0 ... M ) ( c ` j ) ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) ) | 
						
							| 26 |  | nfcv |  |-  F/_ j c | 
						
							| 27 |  | fzfid |  |-  ( ( ph /\ c e. ( C ` N ) ) -> ( 0 ... M ) e. Fin ) | 
						
							| 28 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 29 | 28 | a1i |  |-  ( c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } -> NN0 e. _V ) | 
						
							| 30 |  | fzssnn0 |  |-  ( 0 ... N ) C_ NN0 | 
						
							| 31 |  | mapss |  |-  ( ( NN0 e. _V /\ ( 0 ... N ) C_ NN0 ) -> ( ( 0 ... N ) ^m ( 0 ... M ) ) C_ ( NN0 ^m ( 0 ... M ) ) ) | 
						
							| 32 | 29 30 31 | sylancl |  |-  ( c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } -> ( ( 0 ... N ) ^m ( 0 ... M ) ) C_ ( NN0 ^m ( 0 ... M ) ) ) | 
						
							| 33 | 20 | simpld |  |-  ( c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } -> c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) ) | 
						
							| 34 | 32 33 | sseldd |  |-  ( c e. { c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = N } -> c e. ( NN0 ^m ( 0 ... M ) ) ) | 
						
							| 35 | 18 34 | syl |  |-  ( ( ph /\ c e. ( C ` N ) ) -> c e. ( NN0 ^m ( 0 ... M ) ) ) | 
						
							| 36 | 26 27 35 | mccl |  |-  ( ( ph /\ c e. ( C ` N ) ) -> ( ( ! ` sum_ j e. ( 0 ... M ) ( c ` j ) ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) e. NN ) | 
						
							| 37 | 25 36 | eqeltrd |  |-  ( ( ph /\ c e. ( C ` N ) ) -> ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) e. NN ) | 
						
							| 38 | 37 | nnzd |  |-  ( ( ph /\ c e. ( C ` N ) ) -> ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) e. ZZ ) | 
						
							| 39 | 3 | adantr |  |-  ( ( ph /\ c e. ( C ` N ) ) -> P e. NN ) | 
						
							| 40 | 4 | adantr |  |-  ( ( ph /\ c e. ( C ` N ) ) -> M e. NN0 ) | 
						
							| 41 |  | elmapi |  |-  ( c e. ( ( 0 ... N ) ^m ( 0 ... M ) ) -> c : ( 0 ... M ) --> ( 0 ... N ) ) | 
						
							| 42 | 18 33 41 | 3syl |  |-  ( ( ph /\ c e. ( C ` N ) ) -> c : ( 0 ... M ) --> ( 0 ... N ) ) | 
						
							| 43 | 9 | elfzelzd |  |-  ( ph -> J e. ZZ ) | 
						
							| 44 | 43 | adantr |  |-  ( ( ph /\ c e. ( C ` N ) ) -> J e. ZZ ) | 
						
							| 45 | 39 40 42 44 | etransclem10 |  |-  ( ( ph /\ c e. ( C ` N ) ) -> if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) e. ZZ ) | 
						
							| 46 |  | fzfid |  |-  ( ( ph /\ c e. ( C ` N ) ) -> ( 1 ... M ) e. Fin ) | 
						
							| 47 | 39 | adantr |  |-  ( ( ( ph /\ c e. ( C ` N ) ) /\ j e. ( 1 ... M ) ) -> P e. NN ) | 
						
							| 48 | 42 | adantr |  |-  ( ( ( ph /\ c e. ( C ` N ) ) /\ j e. ( 1 ... M ) ) -> c : ( 0 ... M ) --> ( 0 ... N ) ) | 
						
							| 49 |  | 0z |  |-  0 e. ZZ | 
						
							| 50 |  | fzp1ss |  |-  ( 0 e. ZZ -> ( ( 0 + 1 ) ... M ) C_ ( 0 ... M ) ) | 
						
							| 51 | 49 50 | ax-mp |  |-  ( ( 0 + 1 ) ... M ) C_ ( 0 ... M ) | 
						
							| 52 | 51 | sseli |  |-  ( j e. ( ( 0 + 1 ) ... M ) -> j e. ( 0 ... M ) ) | 
						
							| 53 |  | 1e0p1 |  |-  1 = ( 0 + 1 ) | 
						
							| 54 | 53 | oveq1i |  |-  ( 1 ... M ) = ( ( 0 + 1 ) ... M ) | 
						
							| 55 | 52 54 | eleq2s |  |-  ( j e. ( 1 ... M ) -> j e. ( 0 ... M ) ) | 
						
							| 56 | 55 | adantl |  |-  ( ( ( ph /\ c e. ( C ` N ) ) /\ j e. ( 1 ... M ) ) -> j e. ( 0 ... M ) ) | 
						
							| 57 | 44 | adantr |  |-  ( ( ( ph /\ c e. ( C ` N ) ) /\ j e. ( 1 ... M ) ) -> J e. ZZ ) | 
						
							| 58 | 47 48 56 57 | etransclem3 |  |-  ( ( ( ph /\ c e. ( C ` N ) ) /\ j e. ( 1 ... M ) ) -> if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) e. ZZ ) | 
						
							| 59 | 46 58 | fprodzcl |  |-  ( ( ph /\ c e. ( C ` N ) ) -> prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) e. ZZ ) | 
						
							| 60 | 45 59 | zmulcld |  |-  ( ( ph /\ c e. ( C ` N ) ) -> ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) e. ZZ ) | 
						
							| 61 | 38 60 | zmulcld |  |-  ( ( ph /\ c e. ( C ` N ) ) -> ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) e. ZZ ) | 
						
							| 62 | 6 | adantr |  |-  ( ( ph /\ c e. ( C ` N ) ) -> N e. NN0 ) | 
						
							| 63 |  | etransclem11 |  |-  ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } ) = ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) | 
						
							| 64 | 8 63 | eqtri |  |-  C = ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) | 
						
							| 65 |  | simpr |  |-  ( ( ph /\ c e. ( C ` N ) ) -> c e. ( C ` N ) ) | 
						
							| 66 | 9 | adantr |  |-  ( ( ph /\ c e. ( C ` N ) ) -> J e. ( 0 ... M ) ) | 
						
							| 67 |  | fveq2 |  |-  ( j = k -> ( c ` j ) = ( c ` k ) ) | 
						
							| 68 | 67 | fveq2d |  |-  ( j = k -> ( ! ` ( c ` j ) ) = ( ! ` ( c ` k ) ) ) | 
						
							| 69 | 68 | cbvprodv |  |-  prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) = prod_ k e. ( 0 ... M ) ( ! ` ( c ` k ) ) | 
						
							| 70 | 69 | oveq2i |  |-  ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) = ( ( ! ` N ) / prod_ k e. ( 0 ... M ) ( ! ` ( c ` k ) ) ) | 
						
							| 71 | 67 | breq2d |  |-  ( j = k -> ( P < ( c ` j ) <-> P < ( c ` k ) ) ) | 
						
							| 72 | 67 | oveq2d |  |-  ( j = k -> ( P - ( c ` j ) ) = ( P - ( c ` k ) ) ) | 
						
							| 73 | 72 | fveq2d |  |-  ( j = k -> ( ! ` ( P - ( c ` j ) ) ) = ( ! ` ( P - ( c ` k ) ) ) ) | 
						
							| 74 | 73 | oveq2d |  |-  ( j = k -> ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) = ( ( ! ` P ) / ( ! ` ( P - ( c ` k ) ) ) ) ) | 
						
							| 75 |  | oveq2 |  |-  ( j = k -> ( J - j ) = ( J - k ) ) | 
						
							| 76 | 75 72 | oveq12d |  |-  ( j = k -> ( ( J - j ) ^ ( P - ( c ` j ) ) ) = ( ( J - k ) ^ ( P - ( c ` k ) ) ) ) | 
						
							| 77 | 74 76 | oveq12d |  |-  ( j = k -> ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) = ( ( ( ! ` P ) / ( ! ` ( P - ( c ` k ) ) ) ) x. ( ( J - k ) ^ ( P - ( c ` k ) ) ) ) ) | 
						
							| 78 | 71 77 | ifbieq2d |  |-  ( j = k -> if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) = if ( P < ( c ` k ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` k ) ) ) ) x. ( ( J - k ) ^ ( P - ( c ` k ) ) ) ) ) ) | 
						
							| 79 | 78 | cbvprodv |  |-  prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) = prod_ k e. ( 1 ... M ) if ( P < ( c ` k ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` k ) ) ) ) x. ( ( J - k ) ^ ( P - ( c ` k ) ) ) ) ) | 
						
							| 80 | 79 | oveq2i |  |-  ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) = ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ k e. ( 1 ... M ) if ( P < ( c ` k ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` k ) ) ) ) x. ( ( J - k ) ^ ( P - ( c ` k ) ) ) ) ) ) | 
						
							| 81 | 70 80 | oveq12i |  |-  ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) = ( ( ( ! ` N ) / prod_ k e. ( 0 ... M ) ( ! ` ( c ` k ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ k e. ( 1 ... M ) if ( P < ( c ` k ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` k ) ) ) ) x. ( ( J - k ) ^ ( P - ( c ` k ) ) ) ) ) ) ) | 
						
							| 82 | 39 40 62 64 65 66 81 | etransclem28 |  |-  ( ( ph /\ c e. ( C ` N ) ) -> ( ! ` ( P - 1 ) ) || ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) ) | 
						
							| 83 | 11 15 61 82 | fsumdvds |  |-  ( ph -> ( ! ` ( P - 1 ) ) || sum_ c e. ( C ` N ) ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) ) | 
						
							| 84 | 1 2 3 4 5 6 7 8 10 | etransclem31 |  |-  ( ph -> ( ( ( S Dn F ) ` N ) ` J ) = sum_ c e. ( C ` N ) ( ( ( ! ` N ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) ) | 
						
							| 85 | 83 84 | breqtrrd |  |-  ( ph -> ( ! ` ( P - 1 ) ) || ( ( ( S Dn F ) ` N ) ` J ) ) |