Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem38.p |
|- ( ph -> P e. NN ) |
2 |
|
etransclem38.m |
|- ( ph -> M e. NN0 ) |
3 |
|
etransclem38.f |
|- F = ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) |
4 |
|
etransclem38.i |
|- ( ph -> I e. NN0 ) |
5 |
|
etransclem38.j |
|- ( ph -> J e. ( 0 ... M ) ) |
6 |
|
etransclem38.ij |
|- ( ph -> -. ( I = ( P - 1 ) /\ J = 0 ) ) |
7 |
|
etransclem38.c |
|- C = ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } ) |
8 |
7 4
|
etransclem16 |
|- ( ph -> ( C ` I ) e. Fin ) |
9 |
1
|
nnzd |
|- ( ph -> P e. ZZ ) |
10 |
1
|
adantr |
|- ( ( ph /\ c e. ( C ` I ) ) -> P e. NN ) |
11 |
2
|
adantr |
|- ( ( ph /\ c e. ( C ` I ) ) -> M e. NN0 ) |
12 |
4
|
adantr |
|- ( ( ph /\ c e. ( C ` I ) ) -> I e. NN0 ) |
13 |
|
etransclem11 |
|- ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } ) = ( m e. NN0 |-> { e e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( e ` k ) = m } ) |
14 |
|
etransclem11 |
|- ( m e. NN0 |-> { e e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( e ` k ) = m } ) = ( n e. NN0 |-> { d e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( d ` j ) = n } ) |
15 |
7 13 14
|
3eqtri |
|- C = ( n e. NN0 |-> { d e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( d ` j ) = n } ) |
16 |
|
simpr |
|- ( ( ph /\ c e. ( C ` I ) ) -> c e. ( C ` I ) ) |
17 |
5
|
adantr |
|- ( ( ph /\ c e. ( C ` I ) ) -> J e. ( 0 ... M ) ) |
18 |
|
eqid |
|- ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) = ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) |
19 |
10 11 12 15 16 17 18
|
etransclem28 |
|- ( ( ph /\ c e. ( C ` I ) ) -> ( ! ` ( P - 1 ) ) || ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) ) |
20 |
|
nnm1nn0 |
|- ( P e. NN -> ( P - 1 ) e. NN0 ) |
21 |
1 20
|
syl |
|- ( ph -> ( P - 1 ) e. NN0 ) |
22 |
21
|
faccld |
|- ( ph -> ( ! ` ( P - 1 ) ) e. NN ) |
23 |
22
|
nnzd |
|- ( ph -> ( ! ` ( P - 1 ) ) e. ZZ ) |
24 |
23
|
adantr |
|- ( ( ph /\ c e. ( C ` I ) ) -> ( ! ` ( P - 1 ) ) e. ZZ ) |
25 |
22
|
nnne0d |
|- ( ph -> ( ! ` ( P - 1 ) ) =/= 0 ) |
26 |
25
|
adantr |
|- ( ( ph /\ c e. ( C ` I ) ) -> ( ! ` ( P - 1 ) ) =/= 0 ) |
27 |
5
|
elfzelzd |
|- ( ph -> J e. ZZ ) |
28 |
27
|
adantr |
|- ( ( ph /\ c e. ( C ` I ) ) -> J e. ZZ ) |
29 |
10 11 12 28 15 16
|
etransclem26 |
|- ( ( ph /\ c e. ( C ` I ) ) -> ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) e. ZZ ) |
30 |
|
dvdsval2 |
|- ( ( ( ! ` ( P - 1 ) ) e. ZZ /\ ( ! ` ( P - 1 ) ) =/= 0 /\ ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) e. ZZ ) -> ( ( ! ` ( P - 1 ) ) || ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) <-> ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) ) |
31 |
24 26 29 30
|
syl3anc |
|- ( ( ph /\ c e. ( C ` I ) ) -> ( ( ! ` ( P - 1 ) ) || ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) <-> ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) ) |
32 |
19 31
|
mpbid |
|- ( ( ph /\ c e. ( C ` I ) ) -> ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) |
33 |
|
pm3.22 |
|- ( ( J = 0 /\ I = ( P - 1 ) ) -> ( I = ( P - 1 ) /\ J = 0 ) ) |
34 |
33
|
adantll |
|- ( ( ( ( ph /\ c e. ( C ` I ) ) /\ J = 0 ) /\ I = ( P - 1 ) ) -> ( I = ( P - 1 ) /\ J = 0 ) ) |
35 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ c e. ( C ` I ) ) /\ J = 0 ) /\ I = ( P - 1 ) ) -> -. ( I = ( P - 1 ) /\ J = 0 ) ) |
36 |
34 35
|
pm2.65da |
|- ( ( ( ph /\ c e. ( C ` I ) ) /\ J = 0 ) -> -. I = ( P - 1 ) ) |
37 |
36
|
neqned |
|- ( ( ( ph /\ c e. ( C ` I ) ) /\ J = 0 ) -> I =/= ( P - 1 ) ) |
38 |
1
|
ad3antrrr |
|- ( ( ( ( ph /\ c e. ( C ` I ) ) /\ J = 0 ) /\ I =/= ( P - 1 ) ) -> P e. NN ) |
39 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ c e. ( C ` I ) ) /\ J = 0 ) /\ I =/= ( P - 1 ) ) -> M e. NN0 ) |
40 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ c e. ( C ` I ) ) /\ J = 0 ) /\ I =/= ( P - 1 ) ) -> I e. NN0 ) |
41 |
|
simpr |
|- ( ( ( ( ph /\ c e. ( C ` I ) ) /\ J = 0 ) /\ I =/= ( P - 1 ) ) -> I =/= ( P - 1 ) ) |
42 |
|
simplr |
|- ( ( ( ( ph /\ c e. ( C ` I ) ) /\ J = 0 ) /\ I =/= ( P - 1 ) ) -> J = 0 ) |
43 |
16
|
ad2antrr |
|- ( ( ( ( ph /\ c e. ( C ` I ) ) /\ J = 0 ) /\ I =/= ( P - 1 ) ) -> c e. ( C ` I ) ) |
44 |
38 39 40 41 42 15 43
|
etransclem24 |
|- ( ( ( ( ph /\ c e. ( C ` I ) ) /\ J = 0 ) /\ I =/= ( P - 1 ) ) -> P || ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) ) |
45 |
37 44
|
mpdan |
|- ( ( ( ph /\ c e. ( C ` I ) ) /\ J = 0 ) -> P || ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) ) |
46 |
1
|
ad2antrr |
|- ( ( ( ph /\ c e. ( C ` I ) ) /\ -. J = 0 ) -> P e. NN ) |
47 |
2
|
ad2antrr |
|- ( ( ( ph /\ c e. ( C ` I ) ) /\ -. J = 0 ) -> M e. NN0 ) |
48 |
4
|
ad2antrr |
|- ( ( ( ph /\ c e. ( C ` I ) ) /\ -. J = 0 ) -> I e. NN0 ) |
49 |
7 4
|
etransclem12 |
|- ( ph -> ( C ` I ) = { c e. ( ( 0 ... I ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = I } ) |
50 |
49
|
adantr |
|- ( ( ph /\ c e. ( C ` I ) ) -> ( C ` I ) = { c e. ( ( 0 ... I ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = I } ) |
51 |
16 50
|
eleqtrd |
|- ( ( ph /\ c e. ( C ` I ) ) -> c e. { c e. ( ( 0 ... I ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = I } ) |
52 |
|
rabid |
|- ( c e. { c e. ( ( 0 ... I ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = I } <-> ( c e. ( ( 0 ... I ) ^m ( 0 ... M ) ) /\ sum_ j e. ( 0 ... M ) ( c ` j ) = I ) ) |
53 |
51 52
|
sylib |
|- ( ( ph /\ c e. ( C ` I ) ) -> ( c e. ( ( 0 ... I ) ^m ( 0 ... M ) ) /\ sum_ j e. ( 0 ... M ) ( c ` j ) = I ) ) |
54 |
53
|
simpld |
|- ( ( ph /\ c e. ( C ` I ) ) -> c e. ( ( 0 ... I ) ^m ( 0 ... M ) ) ) |
55 |
|
elmapi |
|- ( c e. ( ( 0 ... I ) ^m ( 0 ... M ) ) -> c : ( 0 ... M ) --> ( 0 ... I ) ) |
56 |
54 55
|
syl |
|- ( ( ph /\ c e. ( C ` I ) ) -> c : ( 0 ... M ) --> ( 0 ... I ) ) |
57 |
56
|
adantr |
|- ( ( ( ph /\ c e. ( C ` I ) ) /\ -. J = 0 ) -> c : ( 0 ... M ) --> ( 0 ... I ) ) |
58 |
53
|
simprd |
|- ( ( ph /\ c e. ( C ` I ) ) -> sum_ j e. ( 0 ... M ) ( c ` j ) = I ) |
59 |
58
|
adantr |
|- ( ( ( ph /\ c e. ( C ` I ) ) /\ -. J = 0 ) -> sum_ j e. ( 0 ... M ) ( c ` j ) = I ) |
60 |
|
1zzd |
|- ( ( ph /\ -. J = 0 ) -> 1 e. ZZ ) |
61 |
2
|
nn0zd |
|- ( ph -> M e. ZZ ) |
62 |
61
|
adantr |
|- ( ( ph /\ -. J = 0 ) -> M e. ZZ ) |
63 |
27
|
adantr |
|- ( ( ph /\ -. J = 0 ) -> J e. ZZ ) |
64 |
|
elfznn0 |
|- ( J e. ( 0 ... M ) -> J e. NN0 ) |
65 |
5 64
|
syl |
|- ( ph -> J e. NN0 ) |
66 |
|
neqne |
|- ( -. J = 0 -> J =/= 0 ) |
67 |
65 66
|
anim12i |
|- ( ( ph /\ -. J = 0 ) -> ( J e. NN0 /\ J =/= 0 ) ) |
68 |
|
elnnne0 |
|- ( J e. NN <-> ( J e. NN0 /\ J =/= 0 ) ) |
69 |
67 68
|
sylibr |
|- ( ( ph /\ -. J = 0 ) -> J e. NN ) |
70 |
69
|
nnge1d |
|- ( ( ph /\ -. J = 0 ) -> 1 <_ J ) |
71 |
|
elfzle2 |
|- ( J e. ( 0 ... M ) -> J <_ M ) |
72 |
5 71
|
syl |
|- ( ph -> J <_ M ) |
73 |
72
|
adantr |
|- ( ( ph /\ -. J = 0 ) -> J <_ M ) |
74 |
60 62 63 70 73
|
elfzd |
|- ( ( ph /\ -. J = 0 ) -> J e. ( 1 ... M ) ) |
75 |
74
|
adantlr |
|- ( ( ( ph /\ c e. ( C ` I ) ) /\ -. J = 0 ) -> J e. ( 1 ... M ) ) |
76 |
46 47 48 57 59 18 75
|
etransclem25 |
|- ( ( ( ph /\ c e. ( C ` I ) ) /\ -. J = 0 ) -> ( ! ` P ) || ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) ) |
77 |
1
|
nncnd |
|- ( ph -> P e. CC ) |
78 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
79 |
77 78
|
npcand |
|- ( ph -> ( ( P - 1 ) + 1 ) = P ) |
80 |
79
|
eqcomd |
|- ( ph -> P = ( ( P - 1 ) + 1 ) ) |
81 |
80
|
fveq2d |
|- ( ph -> ( ! ` P ) = ( ! ` ( ( P - 1 ) + 1 ) ) ) |
82 |
|
facp1 |
|- ( ( P - 1 ) e. NN0 -> ( ! ` ( ( P - 1 ) + 1 ) ) = ( ( ! ` ( P - 1 ) ) x. ( ( P - 1 ) + 1 ) ) ) |
83 |
21 82
|
syl |
|- ( ph -> ( ! ` ( ( P - 1 ) + 1 ) ) = ( ( ! ` ( P - 1 ) ) x. ( ( P - 1 ) + 1 ) ) ) |
84 |
79
|
oveq2d |
|- ( ph -> ( ( ! ` ( P - 1 ) ) x. ( ( P - 1 ) + 1 ) ) = ( ( ! ` ( P - 1 ) ) x. P ) ) |
85 |
22
|
nncnd |
|- ( ph -> ( ! ` ( P - 1 ) ) e. CC ) |
86 |
85 77
|
mulcomd |
|- ( ph -> ( ( ! ` ( P - 1 ) ) x. P ) = ( P x. ( ! ` ( P - 1 ) ) ) ) |
87 |
84 86
|
eqtrd |
|- ( ph -> ( ( ! ` ( P - 1 ) ) x. ( ( P - 1 ) + 1 ) ) = ( P x. ( ! ` ( P - 1 ) ) ) ) |
88 |
81 83 87
|
3eqtrrd |
|- ( ph -> ( P x. ( ! ` ( P - 1 ) ) ) = ( ! ` P ) ) |
89 |
88
|
ad2antrr |
|- ( ( ( ph /\ c e. ( C ` I ) ) /\ -. J = 0 ) -> ( P x. ( ! ` ( P - 1 ) ) ) = ( ! ` P ) ) |
90 |
29
|
zcnd |
|- ( ( ph /\ c e. ( C ` I ) ) -> ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) e. CC ) |
91 |
85
|
adantr |
|- ( ( ph /\ c e. ( C ` I ) ) -> ( ! ` ( P - 1 ) ) e. CC ) |
92 |
90 91 26
|
divcan1d |
|- ( ( ph /\ c e. ( C ` I ) ) -> ( ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) x. ( ! ` ( P - 1 ) ) ) = ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) ) |
93 |
92
|
adantr |
|- ( ( ( ph /\ c e. ( C ` I ) ) /\ -. J = 0 ) -> ( ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) x. ( ! ` ( P - 1 ) ) ) = ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) ) |
94 |
76 89 93
|
3brtr4d |
|- ( ( ( ph /\ c e. ( C ` I ) ) /\ -. J = 0 ) -> ( P x. ( ! ` ( P - 1 ) ) ) || ( ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) x. ( ! ` ( P - 1 ) ) ) ) |
95 |
9
|
ad2antrr |
|- ( ( ( ph /\ c e. ( C ` I ) ) /\ -. J = 0 ) -> P e. ZZ ) |
96 |
32
|
adantr |
|- ( ( ( ph /\ c e. ( C ` I ) ) /\ -. J = 0 ) -> ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ ) |
97 |
23
|
ad2antrr |
|- ( ( ( ph /\ c e. ( C ` I ) ) /\ -. J = 0 ) -> ( ! ` ( P - 1 ) ) e. ZZ ) |
98 |
25
|
ad2antrr |
|- ( ( ( ph /\ c e. ( C ` I ) ) /\ -. J = 0 ) -> ( ! ` ( P - 1 ) ) =/= 0 ) |
99 |
|
dvdsmulcr |
|- ( ( P e. ZZ /\ ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) e. ZZ /\ ( ( ! ` ( P - 1 ) ) e. ZZ /\ ( ! ` ( P - 1 ) ) =/= 0 ) ) -> ( ( P x. ( ! ` ( P - 1 ) ) ) || ( ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) x. ( ! ` ( P - 1 ) ) ) <-> P || ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) ) ) |
100 |
95 96 97 98 99
|
syl112anc |
|- ( ( ( ph /\ c e. ( C ` I ) ) /\ -. J = 0 ) -> ( ( P x. ( ! ` ( P - 1 ) ) ) || ( ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) x. ( ! ` ( P - 1 ) ) ) <-> P || ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) ) ) |
101 |
94 100
|
mpbid |
|- ( ( ( ph /\ c e. ( C ` I ) ) /\ -. J = 0 ) -> P || ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) ) |
102 |
45 101
|
pm2.61dan |
|- ( ( ph /\ c e. ( C ` I ) ) -> P || ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) ) |
103 |
8 9 32 102
|
fsumdvds |
|- ( ph -> P || sum_ c e. ( C ` I ) ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) ) |
104 |
|
reelprrecn |
|- RR e. { RR , CC } |
105 |
104
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
106 |
|
reopn |
|- RR e. ( topGen ` ran (,) ) |
107 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
108 |
107
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
109 |
106 108
|
eleqtri |
|- RR e. ( ( TopOpen ` CCfld ) |`t RR ) |
110 |
109
|
a1i |
|- ( ph -> RR e. ( ( TopOpen ` CCfld ) |`t RR ) ) |
111 |
|
etransclem5 |
|- ( k e. ( 0 ... M ) |-> ( y e. RR |-> ( ( y - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) ) = ( j e. ( 0 ... M ) |-> ( x e. RR |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) |
112 |
|
fzssre |
|- ( 0 ... M ) C_ RR |
113 |
112 5
|
sselid |
|- ( ph -> J e. RR ) |
114 |
105 110 1 2 3 4 111 7 113
|
etransclem31 |
|- ( ph -> ( ( ( RR Dn F ) ` I ) ` J ) = sum_ c e. ( C ` I ) ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) ) |
115 |
114
|
oveq1d |
|- ( ph -> ( ( ( ( RR Dn F ) ` I ) ` J ) / ( ! ` ( P - 1 ) ) ) = ( sum_ c e. ( C ` I ) ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) ) |
116 |
8 85 90 25
|
fsumdivc |
|- ( ph -> ( sum_ c e. ( C ` I ) ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) = sum_ c e. ( C ` I ) ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) ) |
117 |
115 116
|
eqtrd |
|- ( ph -> ( ( ( ( RR Dn F ) ` I ) ` J ) / ( ! ` ( P - 1 ) ) ) = sum_ c e. ( C ` I ) ( ( ( ( ! ` I ) / prod_ j e. ( 0 ... M ) ( ! ` ( c ` j ) ) ) x. ( if ( ( P - 1 ) < ( c ` 0 ) , 0 , ( ( ( ! ` ( P - 1 ) ) / ( ! ` ( ( P - 1 ) - ( c ` 0 ) ) ) ) x. ( J ^ ( ( P - 1 ) - ( c ` 0 ) ) ) ) ) x. prod_ j e. ( 1 ... M ) if ( P < ( c ` j ) , 0 , ( ( ( ! ` P ) / ( ! ` ( P - ( c ` j ) ) ) ) x. ( ( J - j ) ^ ( P - ( c ` j ) ) ) ) ) ) ) / ( ! ` ( P - 1 ) ) ) ) |
118 |
103 117
|
breqtrrd |
|- ( ph -> P || ( ( ( ( RR Dn F ) ` I ) ` J ) / ( ! ` ( P - 1 ) ) ) ) |