Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem39.p |
|- ( ph -> P e. NN ) |
2 |
|
etransclem39.m |
|- ( ph -> M e. NN0 ) |
3 |
|
etransclem39.f |
|- F = ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) |
4 |
|
etransclem39.g |
|- G = ( x e. RR |-> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) ) |
5 |
|
fzfid |
|- ( ( ph /\ x e. RR ) -> ( 0 ... R ) e. Fin ) |
6 |
|
reelprrecn |
|- RR e. { RR , CC } |
7 |
6
|
a1i |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> RR e. { RR , CC } ) |
8 |
|
reopn |
|- RR e. ( topGen ` ran (,) ) |
9 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
10 |
9
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
11 |
8 10
|
eleqtri |
|- RR e. ( ( TopOpen ` CCfld ) |`t RR ) |
12 |
11
|
a1i |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> RR e. ( ( TopOpen ` CCfld ) |`t RR ) ) |
13 |
1
|
adantr |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> P e. NN ) |
14 |
2
|
adantr |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> M e. NN0 ) |
15 |
|
elfznn0 |
|- ( i e. ( 0 ... R ) -> i e. NN0 ) |
16 |
15
|
adantl |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> i e. NN0 ) |
17 |
7 12 13 14 3 16
|
etransclem33 |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` i ) : RR --> CC ) |
18 |
17
|
adantlr |
|- ( ( ( ph /\ x e. RR ) /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` i ) : RR --> CC ) |
19 |
|
simplr |
|- ( ( ( ph /\ x e. RR ) /\ i e. ( 0 ... R ) ) -> x e. RR ) |
20 |
18 19
|
ffvelrnd |
|- ( ( ( ph /\ x e. RR ) /\ i e. ( 0 ... R ) ) -> ( ( ( RR Dn F ) ` i ) ` x ) e. CC ) |
21 |
5 20
|
fsumcl |
|- ( ( ph /\ x e. RR ) -> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) e. CC ) |
22 |
21 4
|
fmptd |
|- ( ph -> G : RR --> CC ) |