| Step |
Hyp |
Ref |
Expression |
| 1 |
|
etransclem39.p |
|- ( ph -> P e. NN ) |
| 2 |
|
etransclem39.m |
|- ( ph -> M e. NN0 ) |
| 3 |
|
etransclem39.f |
|- F = ( x e. RR |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) |
| 4 |
|
etransclem39.g |
|- G = ( x e. RR |-> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) ) |
| 5 |
|
fzfid |
|- ( ( ph /\ x e. RR ) -> ( 0 ... R ) e. Fin ) |
| 6 |
|
reelprrecn |
|- RR e. { RR , CC } |
| 7 |
6
|
a1i |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> RR e. { RR , CC } ) |
| 8 |
|
reopn |
|- RR e. ( topGen ` ran (,) ) |
| 9 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 10 |
8 9
|
eleqtri |
|- RR e. ( ( TopOpen ` CCfld ) |`t RR ) |
| 11 |
10
|
a1i |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> RR e. ( ( TopOpen ` CCfld ) |`t RR ) ) |
| 12 |
1
|
adantr |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> P e. NN ) |
| 13 |
2
|
adantr |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> M e. NN0 ) |
| 14 |
|
elfznn0 |
|- ( i e. ( 0 ... R ) -> i e. NN0 ) |
| 15 |
14
|
adantl |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> i e. NN0 ) |
| 16 |
7 11 12 13 3 15
|
etransclem33 |
|- ( ( ph /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` i ) : RR --> CC ) |
| 17 |
16
|
adantlr |
|- ( ( ( ph /\ x e. RR ) /\ i e. ( 0 ... R ) ) -> ( ( RR Dn F ) ` i ) : RR --> CC ) |
| 18 |
|
simplr |
|- ( ( ( ph /\ x e. RR ) /\ i e. ( 0 ... R ) ) -> x e. RR ) |
| 19 |
17 18
|
ffvelcdmd |
|- ( ( ( ph /\ x e. RR ) /\ i e. ( 0 ... R ) ) -> ( ( ( RR Dn F ) ` i ) ` x ) e. CC ) |
| 20 |
5 19
|
fsumcl |
|- ( ( ph /\ x e. RR ) -> sum_ i e. ( 0 ... R ) ( ( ( RR Dn F ) ` i ) ` x ) e. CC ) |
| 21 |
20 4
|
fmptd |
|- ( ph -> G : RR --> CC ) |