Step |
Hyp |
Ref |
Expression |
1 |
|
etransclem4.a |
|- ( ph -> A C_ CC ) |
2 |
|
etransclem4.p |
|- ( ph -> P e. NN ) |
3 |
|
etransclem4.M |
|- ( ph -> M e. NN0 ) |
4 |
|
etransclem4.f |
|- F = ( x e. A |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) |
5 |
|
etransclem4.h |
|- H = ( j e. ( 0 ... M ) |-> ( x e. A |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) |
6 |
|
etransclem4.e |
|- E = ( x e. A |-> prod_ j e. ( 0 ... M ) ( ( H ` j ) ` x ) ) |
7 |
|
simpr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> j e. ( 0 ... M ) ) |
8 |
|
cnex |
|- CC e. _V |
9 |
8
|
ssex |
|- ( A C_ CC -> A e. _V ) |
10 |
|
mptexg |
|- ( A e. _V -> ( x e. A |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) e. _V ) |
11 |
1 9 10
|
3syl |
|- ( ph -> ( x e. A |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) e. _V ) |
12 |
11
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( x e. A |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) e. _V ) |
13 |
5
|
fvmpt2 |
|- ( ( j e. ( 0 ... M ) /\ ( x e. A |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) e. _V ) -> ( H ` j ) = ( x e. A |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) |
14 |
7 12 13
|
syl2anc |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( H ` j ) = ( x e. A |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) |
15 |
|
ovexd |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. A ) -> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) e. _V ) |
16 |
14 15
|
fvmpt2d |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. A ) -> ( ( H ` j ) ` x ) = ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) |
17 |
16
|
an32s |
|- ( ( ( ph /\ x e. A ) /\ j e. ( 0 ... M ) ) -> ( ( H ` j ) ` x ) = ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) |
18 |
17
|
prodeq2dv |
|- ( ( ph /\ x e. A ) -> prod_ j e. ( 0 ... M ) ( ( H ` j ) ` x ) = prod_ j e. ( 0 ... M ) ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) |
19 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
20 |
3 19
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` 0 ) ) |
21 |
20
|
adantr |
|- ( ( ph /\ x e. A ) -> M e. ( ZZ>= ` 0 ) ) |
22 |
1
|
sselda |
|- ( ( ph /\ x e. A ) -> x e. CC ) |
23 |
22
|
adantr |
|- ( ( ( ph /\ x e. A ) /\ j e. ( 0 ... M ) ) -> x e. CC ) |
24 |
|
elfzelz |
|- ( j e. ( 0 ... M ) -> j e. ZZ ) |
25 |
24
|
zcnd |
|- ( j e. ( 0 ... M ) -> j e. CC ) |
26 |
25
|
adantl |
|- ( ( ( ph /\ x e. A ) /\ j e. ( 0 ... M ) ) -> j e. CC ) |
27 |
23 26
|
subcld |
|- ( ( ( ph /\ x e. A ) /\ j e. ( 0 ... M ) ) -> ( x - j ) e. CC ) |
28 |
|
nnm1nn0 |
|- ( P e. NN -> ( P - 1 ) e. NN0 ) |
29 |
2 28
|
syl |
|- ( ph -> ( P - 1 ) e. NN0 ) |
30 |
2
|
nnnn0d |
|- ( ph -> P e. NN0 ) |
31 |
29 30
|
ifcld |
|- ( ph -> if ( j = 0 , ( P - 1 ) , P ) e. NN0 ) |
32 |
31
|
ad2antrr |
|- ( ( ( ph /\ x e. A ) /\ j e. ( 0 ... M ) ) -> if ( j = 0 , ( P - 1 ) , P ) e. NN0 ) |
33 |
27 32
|
expcld |
|- ( ( ( ph /\ x e. A ) /\ j e. ( 0 ... M ) ) -> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) e. CC ) |
34 |
|
oveq2 |
|- ( j = 0 -> ( x - j ) = ( x - 0 ) ) |
35 |
|
iftrue |
|- ( j = 0 -> if ( j = 0 , ( P - 1 ) , P ) = ( P - 1 ) ) |
36 |
34 35
|
oveq12d |
|- ( j = 0 -> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) = ( ( x - 0 ) ^ ( P - 1 ) ) ) |
37 |
21 33 36
|
fprod1p |
|- ( ( ph /\ x e. A ) -> prod_ j e. ( 0 ... M ) ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) = ( ( ( x - 0 ) ^ ( P - 1 ) ) x. prod_ j e. ( ( 0 + 1 ) ... M ) ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) |
38 |
22
|
subid1d |
|- ( ( ph /\ x e. A ) -> ( x - 0 ) = x ) |
39 |
38
|
oveq1d |
|- ( ( ph /\ x e. A ) -> ( ( x - 0 ) ^ ( P - 1 ) ) = ( x ^ ( P - 1 ) ) ) |
40 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
41 |
40
|
oveq1i |
|- ( ( 0 + 1 ) ... M ) = ( 1 ... M ) |
42 |
41
|
a1i |
|- ( ph -> ( ( 0 + 1 ) ... M ) = ( 1 ... M ) ) |
43 |
|
0red |
|- ( j e. ( 1 ... M ) -> 0 e. RR ) |
44 |
|
1red |
|- ( j e. ( 1 ... M ) -> 1 e. RR ) |
45 |
|
elfzelz |
|- ( j e. ( 1 ... M ) -> j e. ZZ ) |
46 |
45
|
zred |
|- ( j e. ( 1 ... M ) -> j e. RR ) |
47 |
|
0lt1 |
|- 0 < 1 |
48 |
47
|
a1i |
|- ( j e. ( 1 ... M ) -> 0 < 1 ) |
49 |
|
elfzle1 |
|- ( j e. ( 1 ... M ) -> 1 <_ j ) |
50 |
43 44 46 48 49
|
ltletrd |
|- ( j e. ( 1 ... M ) -> 0 < j ) |
51 |
50
|
gt0ne0d |
|- ( j e. ( 1 ... M ) -> j =/= 0 ) |
52 |
51
|
neneqd |
|- ( j e. ( 1 ... M ) -> -. j = 0 ) |
53 |
52
|
iffalsed |
|- ( j e. ( 1 ... M ) -> if ( j = 0 , ( P - 1 ) , P ) = P ) |
54 |
53
|
oveq2d |
|- ( j e. ( 1 ... M ) -> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) = ( ( x - j ) ^ P ) ) |
55 |
54
|
adantl |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) = ( ( x - j ) ^ P ) ) |
56 |
42 55
|
prodeq12rdv |
|- ( ph -> prod_ j e. ( ( 0 + 1 ) ... M ) ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) = prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) |
57 |
56
|
adantr |
|- ( ( ph /\ x e. A ) -> prod_ j e. ( ( 0 + 1 ) ... M ) ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) = prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) |
58 |
39 57
|
oveq12d |
|- ( ( ph /\ x e. A ) -> ( ( ( x - 0 ) ^ ( P - 1 ) ) x. prod_ j e. ( ( 0 + 1 ) ... M ) ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) = ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) |
59 |
18 37 58
|
3eqtrrd |
|- ( ( ph /\ x e. A ) -> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) = prod_ j e. ( 0 ... M ) ( ( H ` j ) ` x ) ) |
60 |
59
|
mpteq2dva |
|- ( ph -> ( x e. A |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) = ( x e. A |-> prod_ j e. ( 0 ... M ) ( ( H ` j ) ` x ) ) ) |
61 |
60 4 6
|
3eqtr4g |
|- ( ph -> F = E ) |