Description: The N -th derivative of F is continuous. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | etransclem40.s | |- ( ph -> S e. { RR , CC } ) |
|
| etransclem40.a | |- ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) |
||
| etransclem40.p | |- ( ph -> P e. NN ) |
||
| etransclem40.m | |- ( ph -> M e. NN0 ) |
||
| etransclem40.f | |- F = ( x e. X |-> ( ( x ^ ( P - 1 ) ) x. prod_ k e. ( 1 ... M ) ( ( x - k ) ^ P ) ) ) |
||
| etransclem40.6 | |- ( ph -> N e. NN0 ) |
||
| Assertion | etransclem40 | |- ( ph -> ( ( S Dn F ) ` N ) e. ( X -cn-> CC ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | etransclem40.s | |- ( ph -> S e. { RR , CC } ) |
|
| 2 | etransclem40.a | |- ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) |
|
| 3 | etransclem40.p | |- ( ph -> P e. NN ) |
|
| 4 | etransclem40.m | |- ( ph -> M e. NN0 ) |
|
| 5 | etransclem40.f | |- F = ( x e. X |-> ( ( x ^ ( P - 1 ) ) x. prod_ k e. ( 1 ... M ) ( ( x - k ) ^ P ) ) ) |
|
| 6 | etransclem40.6 | |- ( ph -> N e. NN0 ) |
|
| 7 | etransclem5 | |- ( j e. ( 0 ... M ) |-> ( y e. X |-> ( ( y - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) = ( k e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) ) |
|
| 8 | etransclem11 | |- ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( d ` j ) = m } ) = ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( c ` k ) = n } ) |
|
| 9 | 1 2 3 4 5 6 7 8 | etransclem34 | |- ( ph -> ( ( S Dn F ) ` N ) e. ( X -cn-> CC ) ) |