Description: The N -th derivative of F applied to J is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | etransclem42.s | |- ( ph -> S e. { RR , CC } ) |
|
etransclem42.x | |- ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) |
||
etransclem42.p | |- ( ph -> P e. NN ) |
||
etransclem42.m | |- ( ph -> M e. NN0 ) |
||
etransclem42.f | |- F = ( x e. X |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) |
||
etransclem42.n | |- ( ph -> N e. NN0 ) |
||
etransclem42.jx | |- ( ph -> J e. X ) |
||
etransclem42.jz | |- ( ph -> J e. ZZ ) |
||
Assertion | etransclem42 | |- ( ph -> ( ( ( S Dn F ) ` N ) ` J ) e. ZZ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | etransclem42.s | |- ( ph -> S e. { RR , CC } ) |
|
2 | etransclem42.x | |- ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) |
|
3 | etransclem42.p | |- ( ph -> P e. NN ) |
|
4 | etransclem42.m | |- ( ph -> M e. NN0 ) |
|
5 | etransclem42.f | |- F = ( x e. X |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) ) |
|
6 | etransclem42.n | |- ( ph -> N e. NN0 ) |
|
7 | etransclem42.jx | |- ( ph -> J e. X ) |
|
8 | etransclem42.jz | |- ( ph -> J e. ZZ ) |
|
9 | etransclem5 | |- ( k e. ( 0 ... M ) |-> ( y e. X |-> ( ( y - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) ) = ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) |
|
10 | etransclem11 | |- ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) = ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } ) |
|
11 | 1 2 3 4 5 6 9 7 8 10 | etransclem36 | |- ( ph -> ( ( ( S Dn F ) ` N ) ` J ) e. ZZ ) |