Metamath Proof Explorer


Theorem etransclem42

Description: The N -th derivative of F applied to J is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem42.s
|- ( ph -> S e. { RR , CC } )
etransclem42.x
|- ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) )
etransclem42.p
|- ( ph -> P e. NN )
etransclem42.m
|- ( ph -> M e. NN0 )
etransclem42.f
|- F = ( x e. X |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) )
etransclem42.n
|- ( ph -> N e. NN0 )
etransclem42.jx
|- ( ph -> J e. X )
etransclem42.jz
|- ( ph -> J e. ZZ )
Assertion etransclem42
|- ( ph -> ( ( ( S Dn F ) ` N ) ` J ) e. ZZ )

Proof

Step Hyp Ref Expression
1 etransclem42.s
 |-  ( ph -> S e. { RR , CC } )
2 etransclem42.x
 |-  ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) )
3 etransclem42.p
 |-  ( ph -> P e. NN )
4 etransclem42.m
 |-  ( ph -> M e. NN0 )
5 etransclem42.f
 |-  F = ( x e. X |-> ( ( x ^ ( P - 1 ) ) x. prod_ j e. ( 1 ... M ) ( ( x - j ) ^ P ) ) )
6 etransclem42.n
 |-  ( ph -> N e. NN0 )
7 etransclem42.jx
 |-  ( ph -> J e. X )
8 etransclem42.jz
 |-  ( ph -> J e. ZZ )
9 etransclem5
 |-  ( k e. ( 0 ... M ) |-> ( y e. X |-> ( ( y - k ) ^ if ( k = 0 , ( P - 1 ) , P ) ) ) ) = ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) )
10 etransclem11
 |-  ( m e. NN0 |-> { d e. ( ( 0 ... m ) ^m ( 0 ... M ) ) | sum_ k e. ( 0 ... M ) ( d ` k ) = m } ) = ( n e. NN0 |-> { c e. ( ( 0 ... n ) ^m ( 0 ... M ) ) | sum_ j e. ( 0 ... M ) ( c ` j ) = n } )
11 1 2 3 4 5 6 9 7 8 10 etransclem36
 |-  ( ph -> ( ( ( S Dn F ) ` N ) ` J ) e. ZZ )